TY - JOUR A1 - Schaepe, Kaija A1 - R. Bhandari, D. A1 - Werner, J. A1 - Henss, A. A1 - Pirkl, A. A1 - Kleine-Boymann, M. A1 - Rohnke, M. A1 - Wenisch, S. A1 - Neumann, E. A1 - Janek, J. A1 - Spengler, B. T1 - Imaging of lipids in native human bone sections using TOF-secondary ion mass spectrometry, atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization orbitrap mass spectrometry, and orbitrap-secondary ion mass spectrometry N2 - A method is described for high-resolution label-free molecular imaging of human bone tissue. To preserve the lipid content and the heterogeneous structure of osseous tissue, 4 μm thick human bone sections were prepared via cryoembedding and tape-assisted cryosectioning, circumventing the application of organic solvents and a decalcification step. A protocol for comparative mass spectrometry imaging (MSI) on the same section was established for initial analysis with time-of-flight secondary ion mass spectrometry (TOF-SIMS) at a lateral resolution of 10 μm to <500 nm, followed by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) Orbitrap MSI at a lateral resolution of 10 μm. This procedure ultimately enabled MSI of lipids, providing the lateral localization of major lipid classes such as glycero-, glycerophospho-, and sphingolipids. Additionally, the applicability of the recently emerged Orbitrap-TOF-SIMS hybrid system was exemplarily examined and compared to the before-mentioned MSI methods. KW - ToF-SIMS KW - MALDI KW - Mass spectrometry imaging KW - Lipids KW - Osteoporosis KW - Bone KW - Surface analysis PY - 2018 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.8b00892 DO - https://doi.org/10.1021/acs.analchem.8b00892 SN - 0003-2700 SN - 1520-6882 VL - 90 IS - 15 SP - 8856 EP - 8864 PB - ACS Publ. CY - Washington, DC AN - OPUS4-45730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schaepe, Kaija A1 - Jungnickel, H. A1 - Heinrich, Thomas A1 - Tentschert, J. A1 - Luch, A. A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Secondary ion mass spectrometry N2 - This chapter provides an introduction in secondary ion mass spectrometry as one of the leading surface chemical analysis and imaging techniques with molecular specificity in the field of material sciences. The physical basics of the technique are explained along with a description of the typical instrumental setups and their modes of operation. The application paragraph specifically focuses on nanoparticle analysis by SIMS in terms of surface spectrometry, imaging, analysis in organic and complex media, and depth profiling. A review of the existing literature is provided, and selected studies are showcased. Limitations and pitfalls as well as current technical developments of SIMS application in nanoparticle surface chemical analysis are equally discussed. KW - Time-of-flight secondary ion mass spectrometry KW - Surface chemical analysis KW - Imaging KW - Nanomaterials KW - Nanoparticles KW - Core-shell PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00025-0 SP - 481 EP - 509 PB - Elsevier CY - Amsterdam AN - OPUS4-50187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -