TY - JOUR A1 - Kim, K.J. A1 - Kim, J.W. A1 - Moon, D.W. A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Gross, Thomas A1 - Unger, Wolfgang A1 - Jordaan, W. A1 - Staden, M.v. A1 - Prins, S. A1 - Wang, H. A1 - Song, X. A1 - Zhang, L. A1 - Fujimoto, T. A1 - Kojima, I. T1 - Final report on key comparison K67 and parallel pilot study P108: measurement of composition of a thin Fe-Ni alloy film N2 - The Key Comparison K67 and the parallel Pilot Study P108 on quantitative analysis of thin alloy films have been completed in the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of these inter-laboratory comparisons is to determine the degree of equivalence in the measurement capability of national metrology institutes (NMIs) and designated institutes (DIs) for the determination of the composition of thin alloy films. The measurand is expressed in atomic percent. A Fe-Ni alloy film with a certified composition was available for the participants of the inter-laboratory comparison. It has been used as a reference specimen to determine the relative sensitivity factors (RSF) of Fe and Ni for the different analytical methods used by the participants to determine the composition of the test sample. As was shown in the preceding Pilot Study P98, the degrees of equivalence in the measurement capabilities of the participants can be improved in that way. The composition of the reference specimen was certified by inductively coupled plasma mass spectrometry (ICP-MS) using the isotope dilution method. The in-depth and lateral homogeneity, determined in terms of elemental composition, of the certified reference sample and the unknown test sample were confirmed by secondary ion mass spectrometry (SIMS) using C60 primary ions by the leading laboratory. Five laboratories participated in the key comparison. Four of them used x-ray photoelectron spectroscopy (XPS) and one Auger electron spectroscopy (AES). One laboratory participated in the parallel P108 pilot study using electron probe micro analysis with an energy-dispersive spectrometer (ED EPMA) and XPS. KW - XPS KW - AES KW - EDX KW - Fe-Ni alloy film KW - Key comparison KW - CCQM PY - 2010 U6 - https://doi.org/10.1088/0026-1394/47/1A/08011 SN - 0026-1394 SN - 1681-7575 VL - 47 IS - 1A SP - 08011-1 - 08011-15 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-21045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Wirth, Thomas A1 - Terborg, R. A1 - Kim, K.J. A1 - Unger, Wolfgang T1 - Measurement of atomic fractions in Cu(In,Ga)Se2 films by Auger Electron Spectroscopy (AES) and Energy Dispersive Electron Probe Microanalysis (ED-EPMA) N2 - A pilot study (PS) has been performed under the Consultative Committee for Amount of Substance (CCQM) / Surface Analysis Working Group (SAWG) with the objective to compare the atomic fractions of Cu, In, Ga and Se in CIGS alloy films. Four polycrystalline CIGS films with different atomic fractions were fabricated by variation of the relative atomic fraction of Ga on 100 mm x 100 mm soda-lime glass (SLG) substrates. Similar to real solar cells the atomic fractions of the four elements (Cu, In, Ga, Se) are not homogeneous with depth. For the analysis of the CIGS layers of about 2 μm thickness depth profiling with surface analysis techniques such as XPS, AES and SIMS was recommended. A CIGS alloy reference sample with atomic fractions certified by isotope dilution ICP-MS at KRISS has been also put at disposal by the coordinator of the comparison. The certified values were close to the atomic fractions of the samples to be analyzed. Hence, the atomic fractions of Cu, In, Ga and Se in the CIGS films could be determined by the relative sensitivity factors (RSF) derived from the reference CIGS film. The total ion intensities of the constituent elements were obtained by the total number counting (TNC) method. KW - Interlaboratory comparison KW - Auger Electron Spectroscopy (AES) KW - EDX KW - EPMA KW - CIGS KW - CCQM PY - 2014 U6 - https://doi.org/10.1017/S1431927614003730 SN - 1431-9276 SN - 1435-8115 VL - 20 IS - Suppl. S 3 SP - 402 EP - 403 PB - Cambridge University Press CY - New York, NY AN - OPUS4-31339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -