TY - JOUR A1 - Weber, K. A1 - Weber, M. A1 - Menneken, M. A1 - Kral, A. G. A1 - Mertz-Kraus, R. A1 - Geisler, T. A1 - Vogl, Jochen A1 - Tütken, T. T1 - Diagenetic stability of non-traditional stable isotope systems (Ca, Sr, Mg, Zn) in teeth – An in-vitro alteration experiment of biogenic apatite in isotopically enriched tracer solution N2 - Stable isotope ratios and trace element concentrations of fossil bones and teeth are important geochemical proxies for the reconstruction of diet and past environment in archaeology and palaeontology. However, since diagenesis can significantly alter primary diet-related isotope signatures and elemental compositions, it is important to understand and quantify alteration processes. Here, we present the results of in-vitro Alteration experiments of dental tissues from a modern African elephant molar reacted in aqueous solutions at 30 °C and 90 °C for 4 to 63 days. Dental cubes with ≈ 3 mm edge length, comprising both enamel and dentin, were placed into 2 mL of acidic aqueous solution enriched in different isotopes (25Mg, 44Ca, 67Zn, 86Sr, initial pH 1). Element and isotope distribution profiles across the reacted cubes were measured with LA-(MC-)ICP-MS and EMPA, while potential effects on the bioapatite crystal structure were characterised by Raman spectroscopy. In all experiments isotope ratios measured by LA-(MC-)ICP-MS revealed an alteration of the enamel in the outer ≈ 200–300 μm. In contrast, dentin was fully altered (≈ 1.4 mm) after one week at 90 °C while the alteration did not exceed a depth of 150–200 μm during the 30 °C experiments. Then, the tracer solution started also to penetrate through the enamel-dentin junction into the innermost enamel, however, leaving the central part of the enamel unaltered, even after three months. The Raman spectra suggest an initial demineralisation in the acidic environment while organic matter (i.e. collagen) is still preserved. In the 90 °C experiment, Raman spectra of the v1 PO4) band of the dentin shift over time towards synthetic hydroxylapatite patterns and the Ca (and Sr) concentrations in the respective solutions decrease. This indicates precipitation of newly formed apatite. Isotope and element concentration profiles across the dental tissues reveal different exchange mechanisms for different isotope systems. Magnesium is leached from enamel and dentin, while Zn is incorporated into the apatite crystal structure. However, the distribution of both elements is not affected in the innermost enamel where their concentrations do not change over the whole duration of the experiments. We found no correlation of reaction depth in the cubes and experimental duration, which might be caused by natural variability of the dental material already at the beginning of the experiment. Our alteration experiments in a closed system at high temperatures ≤90 °C and low initial pH demonstrate that at least the central part of mm-thick mammalian enamel apatite seems to be resistant against alteration preserving its pristine bioapatite mineral structure as well as its in-vivo elemental and isotopic composition. The experiments assess diagenetic alteration in a novel multi-proxy approach using in-situ analyses in high spatial resolution. It is demonstrated that the isotopes of Ca, Sr, Zn and Mg in the dentin are prone for diagenetic alteration, while enamel is more resistant against alteration and could be used for dietary and physiological reconstructions in fossil teeth. KW - Bioapatite KW - Isotopes KW - Raman spectroscopy KW - Diagenesis KW - LA-(MC-)ICP-MS KW - EPMA PY - 2021 DO - https://doi.org/10.1016/j.chemgeo.2021.120196 VL - 572 SP - 120196 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Kampf, C. J. A1 - Lucas, K. A1 - Lang-Yona, N. A1 - Fröhlich-Nowoisky, J. A1 - Shiraiwa, M. A1 - Lakey, P. S. J. A1 - Lai, S. A1 - Liu, F. A1 - Kunert, A. T. A1 - Ziegler, K. A1 - Shen, F. A1 - Sgarbanti, R. A1 - Weber, B. A1 - Bellinghausen, I. A1 - Saloga, J. A1 - Weller, Michael G. A1 - Duschl, A. A1 - Schuppan, D. A1 - Pöschl, U. T1 - Air pollution and climate change effects on allergies in the anthropocene: Abundance, interaction, and modification of allergens and adjuvants N2 - Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions. KW - Allergie KW - Klimaveränderung KW - Luftverschmutzung KW - Partikel KW - Ozon KW - Stickoxide KW - Allergene KW - Adjuvantien KW - PALM KW - DAMP PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404531 DO - https://doi.org/10.1021/acs.est.6b04908 SN - 1520-5851 SN - 0013-936X VL - 51 IS - 8 SP - 4119 EP - 4141 PB - American Chemical Society (ACS) CY - Washington AN - OPUS4-40453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andrae, K. A1 - Merkel, Stefan A1 - Durmaz, V. A1 - Fackeldey, K. A1 - Köppen, Robert A1 - Weber, M. A1 - Koch, Matthias T1 - Investigation of the ergopeptide epimerization process N2 - Ergopeptides, like ergocornine and a-ergocryptine, exist in an S- and in an R-configuration. Kinetic experiments imply that certain configurations are preferred depending on the solvent. The experimental methods are explained in this article. Furthermore, computational methods are used to understand this configurational preference. Standard quantum chemical methods can predict the favored configurations by using minimum energy calculations on the potential energy landscape. However, the explicit role of the solvent is not revealed by this type of methods. In order to better understand its influence, classical mechanical molecular simulations are applied. It appears from our research that 'folding' the ergopeptide molecules into an intermediate state (between the S- and the R-configuration) is mechanically hindered for the preferred configurations. KW - Ergopeptide KW - Epimerization KW - Hybrid monte carlo KW - Molecular dynamics KW - Conformation KW - Quantum mechanics PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-324632 DO - https://doi.org/10.3390/computation2030102 SN - 2079-3197 VL - 2 IS - 3 SP - 102 EP - 111 PB - MDPI CY - Basel AN - OPUS4-32463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mehner, Hartmut A1 - Menzel, Michael A1 - Weber, K. A1 - Regener, D. T1 - Characterization of the microstructure of high-chromium cast irons using Mössbauer spectroscopy N2 - The finish grinding process for cement materials uses ball mills with differently sized grinding balls. Because the grinding takes place through the impact and friction of the balls, balls with a high wear resistance are desirable and the materials of choice are the high-chromium white cast irons. This article examines the behavior of these cast irons when subjected to various heat treatments. The emphasis is on the dependence of the microstructure properties on the chemical composition of the alloys and the heat treatment parameters. The content of retained austenite and that of carbon in the martensite phase were determined by the use of Mössbauer spectroscopy. The results verify that a higher proportion of retained austenite with low carbon content and a martensite with higher hardness produce a material with good fracture toughness and resistance to abrasive wear. KW - High-cromium cast irons KW - White cast irons KW - Grinding process of cement materials KW - Grinding balls KW - As-cast grinding balls PY - 2001 DO - https://doi.org/10.1016/S1044-5803(01)00143-7 SN - 1044-5803 SN - 1873-4189 VL - 46 SP - 399 EP - 406 PB - Elsevier CY - New York, NY AN - OPUS4-1205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, K. A1 - Regener, D. A1 - Mehner, Hartmut A1 - Menzel, Michael T1 - Characterization of microstructure of high-Cr cast irons using Mössbauer spectroscopy T2 - ICAME `99 Conference CY - Garmisch-Partenkirchen, Germany DA - 1999-08-29 PY - 1999 AN - OPUS4-6230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Debatin, F. A1 - Behrens, K. A1 - Weber, J. A1 - Baburin, I. A. A1 - Thomas, A. A1 - Schmidt, J. A1 - Senkovska, I. A1 - Kaskel, S. A1 - Kelling, A. A1 - Hedin, N. A1 - Bacsik, Z. A1 - Leoni, S. A1 - Seifert, G. A1 - Jäger, Christian A1 - Günter, C. A1 - Schilde, U. A1 - Friedrich, A. A1 - Holdt, H.-J. T1 - An isoreticular family of microporous metal-organic frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate: syntheses, structures and properties N2 - We report on a new series of isoreticular frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate (IFP-1–4, IFP=imidazolate framework Potsdam) that form one-dimensional, microporous hexagonal channels. Varying R in the 2-substitued linker (R=Me (IFP-1), Cl (IFP-2), Br (IFP-3), Et (IFP-4)) allowed the channel diameter (4.0–1.7 Å), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP-2, IFP-3 and IFP-4 are isostructural to previously reported IFP-1. The structures of IFP-2 and IFP-3 were solved by X-ray crystallographic analyses. The structure of IFP-4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and 1H MAS and 13C CP-MAS NMR spectroscopy. All IFPs showed high thermal stability (345–400°C); IFP-1 and IFP-4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO2 was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH4 (at 298 K), CO2 (at 298 K) and H2 (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO2 is physisorbed on IFP-1–4 under dry conditions and that both CO2 and H2O are physisorbed on IFP-1 under moist conditions. KW - Adsorption KW - Metal-organic frameworks KW - Microporous materials KW - N,O ligands KW - Zinc PY - 2012 DO - https://doi.org/10.1002/chem.201200889 SN - 0947-6539 SN - 1521-3765 VL - 18 IS - 37 SP - 11630 EP - 11640 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-27725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Andrae, K. A1 - Proske, Matthias A1 - Kochan, Cindy A1 - Koch, Matthias A1 - Weber, M. A1 - Nehls, Irene T1 - Dynamic covalent hydrazine chemistry as a selective extraction and cleanup technique for the quantification of the Fusarium mycotoxin zearalenone in edible oils N2 - A novel, cost-efficient method for the analytical extraction of the Fusarium mycotoxin zearalenone (ZON) from edible oils by dynamic covalent hydrazine chemistry (DCHC) was developed and validated for its application with high performance liquid chromatography-fluorescence detection (HPLC-FLD). ZON is extracted from the edible oil by hydrazone formation on a polymer resin functionalised with hydrazine groups and subsequently released by hydrolysis. Specifity and precision of this approach are superior to liquid partitioning or gel permeation chromatography (GPC). DCHC also extracts zearalanone (ZAN) but not α-/β-zearalenol or -zearalanol. The hydrodynamic properties of ZON, which were estimated using molecular simulation data, indicate that the compound is unaffected by nanofiltration through the resin pores and thus selectively extracted. The method's levels of detection and quantification are 10 and 30 µg/kg, using 0.2 g of sample. Linearity is given in the range of 10-20,000 µg/kg, the average recovery being 89%. Bias and relative standard deviations do not exceed 7%. In a sample survey of 44 commercial edible oils based on various agricultural commodities (maize, olives, nuts, seeds, etc.) ZON was detected in four maize oil samples, the average content in the positive samples being 99 µg/kg. The HPLC-FLD results were confirmed by HPLC-tandem mass spectrometry and compared to those obtained by a liquid partitioning based sample preparation procedure. KW - Zearalenone KW - Extraction KW - Edible oil KW - Maize KW - Dynamic covalent hydrazine chemistry KW - Hydrazone KW - SPE KW - Hydrodynamic radius KW - HPLC-FLD PY - 2010 DO - https://doi.org/10.1016/j.chroma.2010.02.019 SN - 0021-9673 VL - 1217 IS - 15 SP - 2206 EP - 2215 PB - Elsevier CY - Amsterdam AN - OPUS4-21048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sechi, R. A1 - Fackeldey, K. A1 - Chewle, Surahit A1 - Weber, M. T1 - SepFree NMF: A toolbox for analyzing the kinetics of sequential spectroscopic data N2 - This work addresses the problem of determining the number of components from sequential spectroscopic data analyzed by non-negative matrix factorization without separability assumption (SepFree NMF). These data are stored in a matrix M of dimension “measured times” versus “measured wavenumbers” and can be decomposed to obtain the spectral fingerprints of the states and their evolution over time. SepFree NMF assumes a memoryless (Markovian) process to underline the dynamics and decomposes M so that M = WH, with W representing the components’ fingerprints and H their kinetics. However, the rank of this decomposition (i.e., the number of physical states in the process) has to be guessed from pre-existing knowledge on the observed process. We propose a measure for determining the number of components with the computation of the minimal memory effect resulting from the decomposition; by quantifying how much the obtained factorization is deviating from the Markovian property, we are able to score factorizations of a different number of components. In this way, we estimate the number of different entities which contribute to the observed system, and we can extract kinetic information without knowing the characteristic spectra of the single components. This manuscript provides the mathematical background as well as an analysis of computer generated and experimental sequentially measured Raman spectra. KW - Kinetics from experiments KW - Separability assumption KW - Sequential spectroscopic data PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559046 DO - https://doi.org/10.3390/a15090297 SN - 1999-4893 VL - 15 IS - 9 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fackeldey, K. A1 - Röhm, J. A1 - Niknejad, A. A1 - Chewle, Surahit A1 - Weber, M. T1 - Analyzing Raman spectral data without separabiliy assumption N2 - Raman spectroscopy is a well established tool for the analysis of vibration spectra, which then allow for the determination of individual substances in a chemical sample, or for their phase transitions. In the time-resolved-Raman-sprectroscopy the vibration spectra of a chemical sample are recorded sequentially over a time interval, such that conclusions for intermediate products (transients) can be drawn within a chemical process. The observed data-matrix M from a Raman spectroscopy can be regarded as a matrix product of two unknown matrices W and H, where the first is representing the contribution of the spectra and the latter represents the chemical spectra. One approach for obtaining W and H is the non-negative matrix factorization. We propose a novel approach, which does not need the commonly used separability assumption. The performance of this approach is shown on a real world chemical example. KW - Non-negative matrix factorization KW - NMF KW - Raman spectra KW - Separability condition KW - PCCA+ PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559051 DO - https://doi.org/10.1007/s10910-020-01201-7 SN - 1572-8897 VL - 59 SP - 575 EP - 596 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-55905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolff, M. A1 - Wonneberger, R. A1 - Freiberg, K.E. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Giebeler, L. A1 - Koitzsch, A. A1 - Kunz, C. A1 - Weber, H. A1 - Hufenbach, J.K. A1 - Müller, F.A. A1 - Gräf, S. T1 - Formation of laser-induced periodic surface structures on Zr-based bulk metallic glasses with different chemical composition N2 - Bulk metallic glasses (BMG) are amorphous metal alloys known for their unique physical and mechanical properties. In the present study, the formation of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on the Zr-based BMGs Zr46Cu46Al8, Zr61Cu25Al12Ti2, Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) and Zr57Cu15.4Al10Ni12.6Nb5 (Vit106) was investigated as a function of their different chemical composition. For this purpose, LIPSS were generated on the sample surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz). The surface topography was characterized by scanning electron microscopy and atomic force microscopy. Moreover, the impact of LIPSS formation on the structure and chemical surface composition was analyzed before and after fs-laser irradiation by X-ray diffraction and X-ray photoelectron spectroscopy as well as by transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. Despite the different chemical composition of the investigated BMGs, the fs-laser irradiation resulted in almost similar properties of the generated LIPSS patterns. In the case of Zr61Cu25Al12Ti2, Vit105 and Vit106, the surface analysis revealed the preservation of the amorphous state of the materials during fs-laser irradiation. The study demonstrated the presence of a native oxide layer on all pristine BMGs. In addition, fs-laser irradiation results in the formation of laser-induced oxide layers of larger thickness consisting of an amorphous ZrAlCu-oxide. The precise laser-structuring of BMG surfaces on the nanoscale provides a versatile alternative to thermoplastic forming of BMG surfaces and is of particular interest for the engineering of functional material surfaces. KW - Bulk metallic glasses KW - Femtosecond laser KW - Laser-induced periodic surface structures (LIPSS) KW - Chemical analysis KW - Oxidation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581799 DO - https://doi.org/10.1016/j.surfin.2023.103305 SN - 2468-0230 VL - 42 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-58179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, K. A1 - Weber, M. A1 - Menneken, M. A1 - Kral, A. G. A1 - Mertz-Kraus, R. A1 - Geisler, T. A1 - Vogl, Jochen A1 - Tütken, T. T1 - Diagenetic stability of Ca, Mg, Zn and Sr isotopes in teeth N2 - Stable isotope ratios and trace element concentrations of fossil bones and teeth are important geochemical proxies for the reconstruction of diet and past environment in archaeology and palaeontology. However, since diagenesis can significantly alter in vivo incorporated isotope signatures and elemental compositions, it is important to understand alteration processes. Here, we present the results of in vitro alteration experiments of dental tissues from a modern African elephant molar in aqueous solutions at 30 °C and 90 °C for 4 to 63 days each. Dental cubes with ≈3 mm edge length, comprising both enamel and dentin, were placed into 2 ml of an acidic (HNO3) aqueous solution (pH ≈1) enriched with different isotopes (25Mg, 44Ca, 67Zn, 86Sr). Element and isotope distribution profiles across the different dental cubes were measured with LA-(MC-)ICP-MS and EMPA, while potential changes of the bioapatite crystal structure were characterised by Raman spectroscopy. Isotope ratios measured by LA-(MC-)ICP-MS revealed an alteration of the outer ≈200-300 μm of the enamel in all experiments. Dentin was fully altered after one week (at 90 °C) and the tracer solution started to penetrate through the dentin even into the innermost enamel. However, the central part of the enamel remained unaltered. The Raman spectra suggest a strong recrystallization in the dentin and in the outer ≈40 μm of the enamel and a partial demineralisation of the outer rim of the cubes. Our results indicate that independent of time, temperature or low initial pH, enamel apatite shows a high resistance against the experimental alteration in structure and isotopic composition, in contrast to dentin apatite. T2 - Goldschmidt Conference CY - Online meeting DA - 21.06.2020 KW - Isotope ratio KW - Diagenesis KW - Alteration KW - Bio-apatite PY - 2020 AN - OPUS4-51499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, K.-E. A1 - Weber, P.-M. A1 - Geipel, H. A1 - Hübner, Heinz W. A1 - Weymann, J. T1 - Transport Analyses for Determination of Man-Rem Dose Rates with Regard to Different Modes of Transport, Routing and Packaging T2 - 7th International symposium Packaging and Transportation of Radioactive Materials CY - New Orleans, La., USA DA - 15.05.1983 PY - 1983 VL - 1 SP - 343 EP - 349 AN - OPUS4-36401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -