TY - JOUR A1 - Juribašić, M. A1 - Halasz, I. A1 - Budimir, A. A1 - Užarević, K. A1 - Lukin, S. A1 - Monas, A. A1 - Emmerling, Franziska A1 - Plavec, J. A1 - Ćurić, M. T1 - Reversible Gas−Solid Ammonia N−H Bond Activation Mediated by an Organopalladium Complex JF - Inorganic Chemistry N2 - N−H bond activation of gaseous ammonia is achieved at room temperature in a reversible solvent-free reaction using a solid dicyclopalladated azobenzene complex. Monitoring of the gas−solid reaction in real-time by in situ solid-state Raman spectroscopy enabled a detailed insight into the stepwise activation pathway proceeding to the final amido complex via a stable diammine intermediate. Gas−solid synthesis allowed for isolation and subsequent structural characterization of the intermediate and the final amido product, which presents the first dipalladated complex with the PdII−(μ-NH2)−PdII bridge. Gas−solid reaction is readily followed via color changes associated with conformational switching of the palladated azobenzene backbone. The reaction proceeds analogously in solution and was characterized by UV−vis and NMR spectroscopies showing the same stepwise route to the amido complex. Combining the experimental data with density functional theory calculations we propose a stepwise mechanism of this heterolytic N−H bond activation assisted by exogenous ammonia. KW - In situ KW - Mechanochemistry PY - 2017 DO - https://doi.org/10.1021/acs.inorgchem.7b00422 VL - 56 SP - 5342 EP - 5351 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-40464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -