TY - JOUR A1 - Hilgenberg, Kai A1 - Steinhoff, K. T1 - Texturing of skin-pass rolls by pulsed laser dispersing N2 - Skin-pass rolling is a substantial process step in the production line of sheet material for automotive applications. Textured rolls are used to emboss an immaterial surface structure on sheets for improving their formability in subsequent deep drawing operations. In this paper, state of the art techniques for texturing skin-pass rolls are discussed in order to assess their ability to meet optimal tribological parameters. Two main problems are identified: firstly, structured rolls are affected by ongoing wear limiting the operating time and necessitates perpetual maintenance. Secondly, state of the art techniques are not able to exploit the theoretically known potential of immaterial surface structures for enabling micro-lubrication mechanisms due to geometrical inadequacies. Based on these findings, a new approach for texturing of skin-pass rolls is introduced. The technique uses a localised dispersing of hard ceramic particles by use of pulsed laser radiation. It is shown in this paper that this technique allows the creation of elevated structures with high hardness on the surface of 1.2379 cold-working steel. The wear behaviour of such textured rolls was investigated in a lubricated twin-disc-test. The experiments show that no significant wear of the laser produced structures occur during the test duration. The observed results lead to the assumption that the proposed technique allows the creation of skin-pass roll structures with significantly higher durability. KW - Skin-pass rolling KW - Roll texturing KW - Pulsed laser dispersing KW - Laser implantation KW - Oberflächenstrukturierung KW - Dressierwalzen KW - Laserimplantation PY - 2015 DO - https://doi.org/10.1016/j.jmatprotec.2015.05.027 SN - 0924-0136 SN - 1873-4774 VL - 225 SP - 84 EP - 92 PB - Elsevier CY - Amsterdam AN - OPUS4-33729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinke, D. A1 - Gehrke, N. A1 - Ludwig, F. A1 - Steinhoff, U. A1 - Pankhurst, Q. A. A1 - Lüdtke-Buzug, K. A1 - Thünemann, Andreas A1 - Johansson, Ch. T1 - NanoMag - Standardization of Analysis Methods for Magnetic Nanoparticles N2 - The NanoMag project brings together various leading experts in magnetic nanoparticle synthesis as well as nanoparticle analysis and characterization from research institutes, companies, universities and metrology institutes that will perform cutting-edge research and develop applications in the field of magnetic particles. This work is supported by the European Commission Framework Programme7 under the NanoMag project [grant agreement no 604448]. T2 - 2015 5th International Workshop on Magnetic Particle Imaging (IWMPI) CY - Istanbul, Turkey DA - 26.03.2015 KW - nanoparticles PY - 2015 UR - http://www.nanomag-project.eu/ SN - 978-1-4799-7269-2 SN - 978-1-4799-7271-5 DO - https://doi.org/10.1109/IWMPI.2015.7107065 VL - 2015 SP - P39 PB - IEEE AN - OPUS4-37324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Rethmeier, Michael A1 - Steinhoff, K. T1 - Surface structuring by pulsed laser implantation N2 - Micrometric surface topologies are required for a wide range of technical applications. While lowered surface features have been used for many years to improve the tribological behavior of contacting surfaces, there are also other fields of application, where the potential of elevated surface features is known, e. g. for metal forming tools. However, the demand for a high wear resistance of these structures often inhibits an industrial application. A solution is offered by structuring techniques that use additional material. A promising approach is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This paper describes the potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces by means of microstructural and topological investigations. Afterwards, results of a wear test are given and different applications for this structuring technique are discussed. It can be shown that dome-shaped or ring-shaped structures on a micrometric scale can be produced with high hardness and wear resistance. T2 - THERMEC 2016: 9th International Conference on Processing & Manufacturing of Advanced Materials CY - Graz, Austria DA - 29.05.2016 KW - Surface structuring KW - Metal forming tools KW - Laser implantation KW - Laser dispersing PY - 2017 DO - https://doi.org/10.4028/www.scientific.net/MSF.879.750 SN - 1662-9752 VL - 879 SP - 750 EP - 755 PB - Trans Tech Publications CY - Schweiz AN - OPUS4-38927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Rethmeier, Michael A1 - Steinhoff, K. T1 - Surface structuring by pulsed laser implantation N2 - Micrometric surface topologies are required for a wide range of technical applications. While lowered surface features have been used for many years to improve the tribological behavior of contacting surfaces, there are also other fields of application, where the potential of elevated surface features is known, e. g. for metal forming tools. However, the demand for a high wear resistance of these structures often inhibits an industrial application. A solution is offered by structuring techniques that use additional material. A promising approach is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This paper describes the potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces by means of microstructural and topological investigations. Afterwards, results of a wear test are given and different applications for this structuring technique are discussed. It can be shown that dome-shaped or ring-shaped structures on a micrometric scale can be produced with high hardness and wear resistance. KW - Laser implantation KW - Surface structuring PY - 2017 DO - https://doi.org/10.4028/www.scientific.net/MSF.879.750 SN - 0255-5476 SN - 1662-9752 VL - 879 SP - 750 EP - 755 PB - Trans Tech Publications AN - OPUS4-38263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -