TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor JF - Scientific reports N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dietrich, P. A1 - Beblo-Vranesevic, K. A1 - Kjærvik, Marit A1 - Unger, Wolfgang A1 - Schwibbert, Karin A1 - Hardie, K. A1 - Brown, J. T1 - XPS surface analysis of bacterial samples N2 - This application note presents how EnviroESCA can be used to analyze bacterial samples under near ambient pressure conditions in various states of hydration using different levels of humidity. Such investigations of bacterial cell wall surfaces in their hydrated state are essential for studying biological interfaces at work. The use of innovative near-ambient pressure (NAP-)XPS instrumentation allows the detailed analysis of irregularly-surfaced biofilms. NAP-XPS enables the surface analysis of bacterial samples in their natural hydrated state without complex sample preparation techniques such as freeze-drying or fast-freezing, which are needed for XPS analysis in ultrahigh vacuum. KW - Near ambient pressure XPS KW - Biofilms PY - 2018 UR - http://www.enviroai.com/uploads/1/0/2/8/102861712/xps_surface_analysis_of_bacillus_subtilis_biofilms_final.pdf IS - Application Note #000399 SP - 1 EP - 5 CY - Berlin AN - OPUS4-44588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Beyranvand, S. A1 - Faghani, A. A1 - Ludwig, K. A1 - Schwibbert, Karin A1 - Böttcher, C. A1 - Haag, R. A1 - Adeli, M. T1 - Thermoresponsive Amphiphilic Functionalization of Thermally Reduced Graphene Oxide to Study Graphene/Bacteria Hydrophobic Interactions JF - Langmuir N2 - An understanding of the interactions of 2D nanomaterials with pathogens is of vital importance to developing and controlling their antimicrobial properties. In this work, the interaction of functionalized graphene with tunable hydrophobicity and bacteria is investigated. Poly-(ethylene glycol)-block-(poly-N-isopropylacrylamide) copolymer (PEG-b-PNIPAM) with the triazine joint point was attached to the graphene Surface by a nitrene [2 + 1] cycloaddition reaction. By thermally switching between hydrophobic and hydrophilic states, functionalized graphene sheets were able to bind to bacteria. Bacteria were eventually disrupted when the functionality was switched to the hydrophobic state. On the basis of measuring the different microscopy methods and a live/dead viability assay, it was found that Escherichia coli (E. coli) bacteria are more susceptible to hydrophobic interactions than B. cereus bacteria, under the same conditions. Our investigations confirm that hydrophobic interaction is one of the main driving forces at the presented graphene/bacteria interfaces and promotes the antibacterial activity of graphene derivatives significantly. KW - 2D nanomaterials KW - Functionalized graphene KW - Antimicrobial KW - Hydrophobic interaction PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.8b03660 VL - 35 IS - 13 SP - 4736 EP - 4746 PB - ACS Publications AN - OPUS4-49235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menzel, Friederike A1 - Conradi, Bianca A1 - Rodenacker, K. A1 - Gorbushina, Anna A1 - Schwibbert, Karin ED - Menzel, Friederike T1 - Flow chamber system for the statistical evaluation of bacterial colonization on materials JF - Materials N2 - Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial colonization. Standardized tests relying on statistical evidence are indispensable to evaluate the quality and safety of these new materials. We describe here a flow chamber system for biofilm cultivation under controlled conditions with a total capacity for testing up to 32 samples in parallel. In order to quantify the surface colonization, bacterial cells were DAPI (4‘,6-diamidino-2-phenylindole)-stained and examined with epifluorescence microscopy. More than 100 images of each sample were automatically taken and the surface coverage was estimated using the free open source software g’mic, followed by a precise statistical evaluation. Overview images of all gathered pictures were generated to dissect the colonization characteristics of the selected model organism Escherichia coli W3310 on different materials (glass and implant steel). With our approach, differences in bacterial colonization on different materials can be quantified in a statistically validated manner. This reliable test procedure will support the design of improved materials for medical, industrial, and environmental (subaquatic or subaerial) applications. KW - Subaerial and subaquatic biofilm KW - Escherichia coli KW - Image analysis KW - Microscopy KW - Biofilm KW - Biofouling PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377040 DO - https://doi.org/10.3390/ma9090770 SN - 1996-1944 VL - 9 IS - 9 SP - 770 AN - OPUS4-37704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, C. A1 - Schwibbert, Karin A1 - Achazi, K. A1 - Landsberger, Petra A1 - Gorbushina, Anna A1 - Haag, R. T1 - Active antibacterial and antifouling surface coating via a facile one-step enzymatic cross-linking JF - Biomacromolecules N2 - Prevention of microbial contamination of surfaces is one of the biggest challenges for biomedical applications. Establishing a stable, easily produced, highly antibacterial surface coating offers an efficient solution but remains a technical difficulty. Here, we report on a new approach to create an in situ hydrogel film-coating on glass surfaces made by enzymatic cross-linking under physiological conditions. The cross-linking is catalyzed by horseradish peroxidase (HRP)/glucose oxidase (GOD)-coupled cascade reactions in the presence of glucose and results in 3D dendritic polyglycerol (dPG) scaffolds bound to the surface of glass. These scaffolds continuously release H2O2 as long as glucose is present in the system. The resultant polymeric coating is highly stable, bacterial-repellent, and functions under physiological conditions. Challenged with high loads of bacteria (OD540 = 1.0), this novel hydrogel and glucose-amended coating reduced the cell viability of Pseudomonas putida (Gram-negative) by 100% and Staphylococcus aureus (Gram-positive) by ≥40%, respectively. Moreover, glucose-stimulated production of H2O2 by the coating system was sufficient to kill both test bacteria (at low titers) with >99.99% Efficiency within 24 h. In the presence of glucose, this platform produces a coating with high effectiveness against bacterial adhesion and survival that can be envisioned for the applications in the glucose-associated medical/oral devices. KW - Antifouling KW - Surface coating KW - Biofilm KW - Bacterial adhesion PY - 2017 DO - https://doi.org/10.1021/acs.biomac.6b01527 SN - 1525-7797 SN - 1526-4602 VL - 18 IS - 1 SP - 210 EP - 216 AN - OPUS4-39003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Donskyi, Ievgen A1 - Cuellar-Camacho, J. L. A1 - Cheng, C. A1 - Schwibbert, Karin A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Gorbushina, Anna A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions JF - Nanoscale N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene–pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed “trapping” and “nano-knives” mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of “trapping” and “nano-knives” mechanisms for the antibacterial activity of graphene sheets. KW - XPS KW - Graphene KW - Graphene–bacteria interaction PY - 2018 DO - https://doi.org/10.1039/c8nr01347k SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 20 SP - 9525 EP - 9537 PB - RSC CY - London AN - OPUS4-45084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -