TY - JOUR A1 - Schiebenhoefer, H. A1 - Schallert, K. A1 - Renard, B. Y. A1 - Trappe, K. A1 - Schmid, E. A1 - Benndorf, D. A1 - Riedel, K. A1 - Muth, Thilo A1 - Fuchs, S. T1 - A complete and flexible workflow for metaproteomics data analysis based on MetaProteomeAnalyzer and Prophane N2 - Metaproteomics, the study of the collective protein composition of multi-organism systems, provides deep insights into the biodiversity of microbial communities and the complex functional interplay between microbes and their hosts or environment. Thus, metaproteomics has become an indispensable tool in various fields such as microbiology and related medical applications. The computational challenges in the analysis of corresponding datasets differ from those of pure-culture proteomics, e.g., due to the higher complexity of the samples and the larger reference databases demanding specific computing pipelines. Corresponding data analyses usually consist of numerous manual steps that must be closely synchronized. With MetaProteomeAnalyzer and Prophane, we have established two open-source software solutions specifically developed and optimized for metaproteomics. Among other features, peptide-spectrum matching is improved by combining different search engines and, compared to similar tools, metaproteome annotation benefits from the most comprehensive set of available databases (such as NCBI, UniProt, EggNOG, PFAM, and CAZy). The workflow described in this protocol combines both tools and leads the user through the entire data analysis process, including protein database creation, database search, protein grouping and annotation, and results visualization. To the best of our knowledge, this protocol presents the most comprehensive, detailed and flexible guide to metaproteomics data analysis to date. While beginners are provided with robust, easy-to-use, state-of-the-art data analysis in a reasonable time (a few hours, depending on, among other factors, the protein database size and the number of identified peptides and inferred proteins), advanced users benefit from the flexibility and adaptability of the workflow. KW - Bioinformatics KW - Protocol KW - Microbial proteomics KW - Software KW - Mass spectrometry KW - Metaproteomics PY - 2020 DO - https://doi.org/10.1038/s41596-020-0368-7 SN - 1750-2799 VL - 15 IS - 10 SP - 3212 EP - 3239 PB - Nature Publishing Group AN - OPUS4-51335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Den Bossche, T. A1 - Kunath, B. A1 - Schallert, K. A1 - Schäpe, S. A1 - Abraham, P. E. A1 - Armengaud, J. A1 - Arntzen, M. Ø. A1 - Bassignani, A. A1 - Benndorf, D. A1 - Fuchs, S. A1 - Giannone, R. J. A1 - Griffin, T. J. A1 - Hagen, L. H. A1 - Halder, R. A1 - Henry, C. A1 - Hettich, R. L. A1 - Heyer, R. A1 - Jagtap, P. A1 - Jehmlich, N. A1 - Jensen, M. A1 - Juste, C. A1 - Kleiner, M. A1 - Langella, O. A1 - Lehmann, T. A1 - Leith, E. A1 - May, P. A1 - Mesuere, B. A1 - Miotello, G. A1 - Peters, S. L. A1 - Pible, O. A1 - Queiros, P. T. A1 - Reichl, U. A1 - Renard, B. Y. A1 - Schiebenhoefer, H. A1 - Sczyrba, A. A1 - Tanca, A. A1 - Trappe, K. A1 - Trezzi, J.-P. A1 - Uzzau, S. A1 - Verschaffelt, P. A1 - von Bergen, M. A1 - Wilmes, P. A1 - Wolf, M. A1 - Martens, L. A1 - Muth, Thilo T1 - Critical Assessment of MetaProteome Investigation (CAMPI): A multi-laboratory comparison of established workflows N2 - Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments. KW - Metaproteomics KW - Mass spectrometry KW - Data science KW - Benchmarking KW - Bioinformatics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541220 DO - https://doi.org/10.1038/s41467-021-27542-8 SN - 2041-1723 VL - 12 SP - 1 EP - 15 PB - Nature Publishing Group CY - London AN - OPUS4-54122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van den Bossche, T. A1 - Verschaffelt, P. A1 - Schallert, K. A1 - Barsnes, H. A1 - Dawyndt, P. A1 - Benndorf, D. A1 - Renard, B. Y. A1 - Mesuere, B. A1 - Martens, L. A1 - Muth, Thilo T1 - Connecting MetaProteomeAnalyzer and PeptideShaker to Unipept for Seamless End-to-End Metaproteomics Data Analysis N2 - Although metaproteomics, the study of the collective proteome of microbial communities, has become increasingly powerful and popular over the past few years, the field has lagged behind on the availability of user-friendly, end-to-end pipelines for data analysis. We therefore describe the Connection from two commonly used metaproteomics data processing tools in the field, MetaProteomeAnalyzer and PeptideShaker, to Unipept for downstream analysis. Through these connections, direct end-to-end pipelines are built from database searching to taxonomic and functional annotation. KW - Metaproteomics KW - Bioinformatics KW - Software KW - Pipelines PY - 2020 DO - https://doi.org/10.1021/acs.jproteome.0c00136 VL - 19 IS - 8 SP - 3562 EP - 3566 PB - ACS Publications AN - OPUS4-51331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Walke, D. A1 - Micheel, D. A1 - Schallert, K. A1 - Muth, Thilo A1 - Broneske, D. A1 - Saake, G. A1 - Heyer, R. T1 - The importance of graph databases and graph learning for clinical applications N2 - The increasing amount and complexity of clinical data require an appropriate way of storing and analyzing those data. Traditional approaches use a tabular structure (relational databases) for storing data and thereby complicate storing and retrieving interlinked data from the clinical domain. Graph databases provide a great solution for this by storing data in a graph as nodes (vertices) that are connected by edges (links). The underlying graph structure can be used for the subsequent data analysis (graph learning). Graph learning consists of two parts: graph representation learning and graph analytics. Graph representation learning aims to reduce high-dimensional input graphs to low-dimensional representations. Then, graph analytics uses the obtained representations for analytical tasks like visualization, classification, link prediction and clustering which can be used to solve domain-specific problems. In this survey, we review current state-of-the-art graph database management systems, graph learning algorithms and a variety of graph applications in the clinical domain. Furthermore, we provide a comprehensive use case for a clearer understanding of complex graph learning algorithms. KW - Graph databases KW - Graph learning KW - Review KW - RDF PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580858 DO - https://doi.org/10.1093/database/baad045 SN - 1758-0463 SP - 1 EP - 20 AN - OPUS4-58085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -