TY - JOUR A1 - Sun, F. A1 - Wang, C. A1 - Osenberg, M. A1 - Dong, K. A1 - Zhang, S. A1 - Yang, C. A1 - Wang, Y. A1 - Hilger, A. A1 - Zhang, J. A1 - Dong, S. A1 - Markötter, Henning A1 - Manke, I. A1 - Cui, G. T1 - Clarifying the Electro-Chemo-Mechanical Coupling in Li10SnP2S12 based All-Solid-State Batteries N2 - A fundamental clarification of the electro-chemo-mechanical coupling at the solid–solid electrode|electrolyte interface in all-solid-state batteries (ASSBs) is of crucial significance but has proven challenging. Herein, (synchrotron) X-ray tomography, electrochemical impedance spectroscopy (EIS), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), and finite element analysis (FEA) modeling are jointly used to decouple the electro-chemo-mechanical coupling in Li10SnP2S12-based ASSBs. Non-destructive (synchrotron) X-ray tomography results visually disclose unexpected mechanical deformation of the solid electrolyte and electrode as well as an unanticipated evolving behavior of the (electro)chemically generated interphase. The EIS and TOFSIMS probing results provide additional information that links the interphase/electrode properties to the overall battery performance. The modeling results complete the picture by providing the detailed distribution of the mechanical stress/strain and the potential/ionic flux within the electrolyte. Collectively, these results suggest that 1) the interfacial volume changes induced by the (electro)chemical reactions can trigger the mechanical deformation of the solid electrode and electrolyte; 2) the overall electrochemical process can accelerate the interfacial chemical reactions; 3) the reconfigured interfaces in turn influence the electric potential distribution as well as charge transportation within the SE. These fundamental discoveries that remain unreported until now significantly improve the understanding of the complicated electro-chemo-mechanical couplings in ASSBs. KW - All-solid-state batteries KW - Lithium metal batteries KW - Solid electrolytes KW - Sulfide solid electrolytes KW - Synchrotron X-ray tomography PY - 2022 DO - https://doi.org/10.1002/aenm.202103714 SN - 1614-6832 SP - 2103714 PB - Wiley VHC-Verlag AN - OPUS4-54431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Dong, K. A1 - Mazzio, K. A. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Heinemann, T. A1 - Manke, I. A1 - Adelhelm, P. T1 - Phase transformation and microstructural evolution of CuS electrodes in solid-state batteries probed by in situ 3D X-ray tomography N2 - Copper sulfide shows some unique physico-chemical properties that make it appealing as a cathode active material (CAM) for solid-state batteries (SSBs). The most peculiar feature of the electrode reaction is the reversible formation of μm-sized Cu crystals during cycling, despite its large theoretical volume change (75%). Here, the dynamic microstructural evolution of CuS cathodes in SSBs is studied using in situ synchrotron X-ray tomography. The formation of μm-sized Cu within the CAM particles can be clearly followed. This process is accompanied by crack formation that can be prevented by increasing the stack pressure from 26 to 40 MPa. Both the Cu inclusions and cracks show a preferential orientation perpendicular to the cell stack pressure, which can be a result of a z-oriented expansion of the CAM particles during lithiation. In addition, cycling leads to a z-oriented reversible displacement of the cathode pellet, which is linked to the plating/stripping of the Li counter electrode. The pronounced structural changes cause pressure changes of up to 6 MPa within the cell, as determined by operando stack pressure measurements. Reasons for the reversibility of the electrode reaction are discussed and are attributed to the favorable combination of soft materials. KW - Copper sulfide KW - Crack evolution KW - Digital volume correlation KW - Phase transformation KW - Solid-state batteries PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564577 DO - https://doi.org/10.1002/aenm.202203143 IS - 2203143 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-56457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, J. A1 - Zhu, G. A1 - Dong, K. A1 - Osenberg, M. A1 - Hilger, A. A1 - Markötter, Henning A1 - Ju, J. A1 - Sun, F. A1 - Manke, I. A1 - Cui, G. T1 - Progress and Perspective of Controlling Li Dendrites Growth in All-Solid-State Li Metal Batteries via External Physical Fields N2 - Li dendrites penetration through solid electrolytes (SEs) challenges the development of solid-state Li batteries (SSLBs). To date, significant efforts are devoted to understand the mechanistic dynamics of Li dendrites nucleation, growth, and propagation in SEs, and various strategies that aim to alleviate and even inhibit Li dendrite formation have been proposed. Nevertheless, most of these conventional strategies require either additional material processing steps or new materials/layers that eventually increase battery cost and complexity. In contrast, using external fields, such as mechanical force, temperature physical field, electric field, pulse current, and even magnetic field to regulate Li dendrites penetration through SEs, seems to be one of the most cost-effective strategies. This review focuses on the current research progress of utilizing external physical fields in regulating Li dendrites growth in SSLBs. For this purpose, the mechanical properties of Li and SEs, as well as the experimental results that visually track Li penetration dynamics, are reviewed. Finally, the review ends with remaining open questions in future studies of Li dendrites growth and penetration in SEs. It is hoped this review can shed some light on understanding the complex Li dendrite issues in SSLBs and potentially guide their rational design for further development. KW - Li dendrites KW - Li dendrites penetration mechanisms KW - Solid electrolytes KW - Solid-state batteries PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588331 DO - https://doi.org/10.1002/aesr.202300165 SN - 2699-9412 SP - 1 EP - 44 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Driscoll, Laura L. A1 - Driscoll, Elizabeth H. A1 - Dong, Bo A1 - Sayed, Farheen N. A1 - Wilson, Jacob N. A1 - O’Keefe, Christopher A. A1 - Gardner, Dominic J. A1 - Grey, Clare P. A1 - Allan, Phoebe K. A1 - Michalchuk, Adam A. L. A1 - Slater, Peter R. T1 - Under pressure: offering fundamental insight into structural changes on ball milling battery materials N2 - Synthesis of Li ion battery materials via ball milling has been a huge area of growth, leading to new high-capacity electrode materials, such as a number of promising disordered rocksalt (DRS) phases. In prior work, it was generally assumed that the synthesis was facilitated simply by local heating effects during the milling process. In this work, we show that ball milling Li2MoO4 leads to a phase transformation to the high pressure spinel polymorph and we report electrochemical data for this phase. This observation of the formation of a high pressure polymorph shows that local heating effects alone cannot explain the phase transformation observed (phenakite to spinel) and so indicates the importance of other effects. In particular, we propose that when the milling balls collide with the material, the resulting shockwaves exert a localised pressure effect, in addition to local heating. To provide further support for this, we additionally report ball milling results for a number of case studies (Li2MnO3, Li2SnO3, Nb2O5) which reinforces the conclusion that local heating alone cannot explain the phase transformations observed. The work presented thus provides greater fundamental understanding of milling as a synthetic pathway and suggests potential strategies to prepare such samples without milling (e.g., doping to create internal chemical pressure). In addition, we suggest that further research is needed into the effect of the use of milling as a route to smaller particles, since we believe that such milling may also be affecting the surface structure of the particles through the influence of the shockwaves generated. KW - Pollution KW - Nuclear Energy and Engineering KW - Sustainability and the Environment KW - Environmental Chemistry KW - Renewable Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590086 DO - https://doi.org/10.1039/d3ee00249g VL - 16 IS - 11 SP - 5196 EP - 5209 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, X. A1 - Zhang, S. A1 - Lu, J. A1 - Tang, F. A1 - Dong, K. A1 - Yu, Z. A1 - Hilger, A. A1 - Osenberg, M. A1 - Markötter, Henning A1 - Wilde, F. A1 - Zhang, S. A1 - Zhao, J. A1 - Xu, G. A1 - Manke, I. A1 - Sun, F. A1 - Cui, G. T1 - Unveiling the Electro-Chemo-Mechanical Failure Mechanism of Sodium Metal Anodes in Sodium–Oxygen Batteries by Synchrotron X-Ray Computed Tomography N2 - Rechargeable sodium–oxygen batteries (NaOBs) are receiving extensive research interests because of their advantages such as ultrahigh energy density and cost efficiency. However, the severe failure of Na metal anodes has impeded the commercial development of NaOBs. Herein, combining in situ synchrotron X-ray computed tomography (SXCT) and other complementary characterizations, a novel electro-chemo-mechanical failure mechanism of sodium metal anode in NaOBs is elucidated. It is visually showcased that the Na metal anodes involve a three-stage decay evolution of a porous Na reactive interphase layer (NRIL): from the initially dot-shaped voids evolved into the spindle-shaped voids and the eventually-developed ruptured cracks. The initiation of this three-stage evolution begins with chemical-resting and is exacerbated by further electrochemical cycling. From corrosion science and fracture mechanics, theoretical simulations suggest that the evolution of porous NRIL is driven by the concentrated stress at crack tips. The findings illustrate the importance of preventing electro-chemo-mechanical degradation of Na anodes in practically rechargeable NaOBs. KW - Synchrotron radiation KW - X-ray imaging KW - NaO-battery PY - 2024 DO - https://doi.org/10.1002/adfm.202402253 SN - 1616-301X SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, F A1 - Wu, Z A1 - Yang, C A1 - Osenberg, M A1 - Hilger, A A1 - Dong, K A1 - Markötter, Henning A1 - Manke, I A1 - Sun, F A1 - Chen, L A1 - Cui, G T1 - Synchrotron X-ray tomography for rechargeable battery research: Fundamentals, setups and applications N2 - Understanding the complicated interplay of the continuously evolving electrode materials in their inherent 3D states during the battery operating condition is of great importance for advancing rechargeable battery research. In this regard, the synchrotron X-ray tomography technique, which enables non-destructive, multi-scale, and 3D imaging of a variety of electrode components before/during/after battery operation, becomes an essential tool to deepen this understanding. The past few years have witnessed an increasingly growing interest in applying this technique in battery research. Hence, it is time to not only summarize the already obtained battery-related Knowledge by using this technique, but also to present a fundamental elucidation of this technique to boost future studies in battery research. To this end, this review firstly introduces the fundamental principles and experimental Setups of the synchrotron X-ray tomography technique. After that, a user guide to ist application in battery research and examples of its applications in Research of various types of batteries are presented. The current review ends with a discussion of the future opportunities of this technique for next-generation rechargeable batteries research. It is expected that this review can enhance the reader’s understanding of the synchrotron X-ray tomography technique and stimulate new ideas and opportunities in battery research. KW - 3D imaging KW - Batteries KW - Synchrotron X-Ray KW - Tomography PY - 2021 DO - https://doi.org/10.1002/smtd.202100557 VL - 5 IS - 9 SP - 2100557 PB - Wiley-VCH AN - OPUS4-53394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -