TY - JOUR A1 - Li, X.M. A1 - Li, H.M. A1 - Zhang, Q.H. A1 - Lu, X.H. A1 - Li, S.Q. A1 - Koch, Matthias A1 - Polzer, J. A1 - Hackenber, R. A1 - Moniruzzaman, M. A1 - Khan, M. A1 - Kakoulides, E. A1 - Pak-Wing, K. A1 - Richy, A1 - Chi-Shing, N. A1 - Lu, T. A1 - Gui, E.M. A1 - Cheow, P.S. A1 - Teo, T.L. A1 - Rego, E. A1 - Garrido, B. A1 - Carvalho, L. A1 - Leal, R. A1 - Violante, F. A1 - Baek, S.Y. A1 - Lee, S. A1 - Choi, K. A1 - Kim, B. A1 - Bucar-Miklavcic, M. A1 - Hopley, C. A1 - Nammoonnoy, J. A1 - Murray, J. A1 - Wilson, W. A1 - Toman, B. A1 - Itoh, N. A1 - Gokcen, T. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K146 low-polarity analyte in high fat food: benzo a pyrene in olive oil JF - Metrologia N2 - The demonstration of competency and equivalence for the assessment of levels of contaminants and nutrients in primary foodstuffs is a priority within the 10-year strategy for the OAWG Track A core comparisons. The measurements are core challenges for reference material producers and providers of calibration Services. This key comparison related to low polarity analytes in a high fat, low protein, low carbohydrate food matrix and Benzo[a]pyrene in edible oil was the model System selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (Dis). 16 National Metrology Institutions participated in the Track A Key Comparison CCQM-K146 Low-Polarity Analyte in high fat food: Benzo[a]pyrene in Olive Oil. Participants were requested to evaluate the mass fractions, expressed in µg/kg, of Benzo[a]pyrene in the olive oil material. The KCRV was determined from the results of all NMIs/DIs participating in the key comparison that used appropriately validated methods with demonstrated metrological traceability. Different methods such as liquid-liquid extraction, GPC and SPE were applied in the sample pretreatment and HPLC-FLD, HPLC-MS/MS, and GC-MS or GC-MS/MS were applied for detection by the participants. The mass fractions for BaP were in the range of (1.78 to 3.09) µg/kg with Standard uncertainties of (0.026 to 0.54) µg/kg, with corresponding relative Standard uncertainties from 0.9% to 21%. Five labs withdrew their result from the Statistical evaluation of the KCRV for technical reasons. One lab was excluded from the KCRV evaluation, as they did not meet the CIPM metrological traceability requirements. A Hierarchical Bayes option was selected for the KCRV value, which was determined as 2.74 µg/kg with a Standard uncertainty of 0.03 µg/kg. The 10 institutes those were included in the calculation of the consensus KCRV all agreed within their Standard uncertainties. Successful participation in CCQM-K146 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 0.1 µg/kg to 1000 µg/kg in a high fat, low protein, low carbohydrate food matrix. KW - Metrology KW - CCQM KW - Food KW - PAH PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1a/08017 VL - 57 IS - 1a SP - 08017 AN - OPUS4-52435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bucar, K. A1 - Malet, J. A1 - Stabile, L. A1 - Pražnikar, J. A1 - Seeger, Stefan A1 - Žitnik, M. T1 - Statistics of a Sharp GP2Y Low-Cost Aerosol PM Sensor Output Signals JF - Sensors N2 - In this work, we characterise the performance of a Sharp optical aerosol sensor model GP2Y1010AU0F. The sensor was exposed to different environments: to a clean room, to a controlled atmosphere with known aerosol size distribution and to the ambient atmosphere on a busy city street. During the exposure, the output waveforms of the sensor pulses were digitised, saved and a following offline analysis enabled us to study the behaviour of the sensor pulse-by-pulse. A linear response of the sensor on number concentration of the monosized dispersed PSL particles was shown together with an almost linear dependence on particle diameters in the 0.4 to 4 micrometer range. The gathered data about the sensor were used to predict its response to an ambient atmosphere, which was observed simultaneously with a calibrated optical particle counter. KW - Aerosol KW - Partikel KW - Aerosolsensor KW - Luftgüte KW - Umweltmessung PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517466 DO - https://doi.org/10.3390/s20236707 SN - 1424-8220 VL - 20 IS - 23 SP - 6707 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bucar, K. A1 - Zitnik, M. A1 - Stabile, L. A1 - Ozan, J. A1 - Seeger, Stefan T1 - Performance of a Sharp GP2Y low-cost aerosol PM sensor N2 - Simple particulate matter sensors are gaining popularity due to their low price, easy handling and good temporal resolution. In this presentation, we report on the performance of a Sharp optical PM sensor GP2Y1010AU0F, which costs less than 15 €. The sensor is built around an infrared emitting diode (ILED) and a phototransistor detecting the light scattered from the aerosol particle. An electronic circuit shapes the detected light in a pulsed signal. The manufacturer advises sampling the output signal 280 microseconds after the ILED pulse. The measured output voltage is an indicator of dust concentration. We have built two identical simple PM monitoring devices using Raspberry Pi 3 computer interfacing the PM sensor with Microchip’s MCP3002 ADC via SPI. The ADC is capable of more than 100 ksamples/s at 10-bit resolution. The Rpi3 was pulsing the sensor at 10Hz, digitizing and saving the data and sending the results wirelessly. Sensor’s output pulse shape was sampled with 10 microsecond time steps and saved, thus making offline analysis possible. A time jitter of output pulses can be observed and suggests a peak fitting as a better approach to the signal readout compared to the single sampling at a fixed time after pulse triggering We compared both methods. T2 - European Aerosol Coference EAC 2019 CY - Gothenburg, Sweden DA - 25.08.2019 KW - Aerosol KW - Low cost aerosol PM sensor KW - PM PY - 2019 AN - OPUS4-49581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -