TY - JOUR A1 - Blankenhagel, Paul A1 - Wehrstedt, Klaus-Dieter A1 - Mishra, K. B. A1 - Steinbach, J. T1 - The capability of commercial CFD code to predict organic peroxide fireball characteristics JF - Journal of Hazardous Materials N2 - Fireballs of liquid organic peroxides differ from those of liquid hydrocarbon fuels. Modified equations for predicting the fireball diameter, height, surface emissive power and the duration in dependence of the fuel mass are presented for di-tert-butyl peroxide. They base on 13 steel drum tests with fuel masses from 10 kg to 168 kg. Moreover, computational fluid dynamics simulations are performed using the laminar flamelet approach and a statistically turbulence treatment. Fireballs involving peroxide from 10 kg to 80 kg were simulated and their properties compared to the experimentally developed models. The deviations of each property are partially compensating each other leading to an adequate prediction of thermal safety distances for both, a time-independent and a time-averaged treatment. Simulations prove to be a good tool for predicting thermal radiation hazards of fireball scenarios. KW - Fireball KW - CFD simulation KW - Organic peroxide KW - Fire safety KW - DTBP PY - 2019 DO - https://doi.org/10.1016/j.jhazmat.2018.11.011 SN - 0304-3894 SN - 1873-3336 VL - 365 SP - 386 EP - 394 PB - Elsevier AN - OPUS4-47054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -