TY - GEN A1 - Ahrendt, H. A1 - Gesatzke, Roger A1 - Hahn, G. A1 - Herrmann, P. A1 - Julien, H. A1 - Karger, R. A1 - Kaufmann, M. A1 - Krebs, H.-J. A1 - Lucht, J. A1 - Müller, A. A1 - Müller, R. A1 - Vetter, B. T1 - Überdruckmessgeräte nach DIN EN 837 - Auswahl und Anwendung KW - Druckmessgerät KW - Sicherheit PY - 2007 SN - 978-3-410-16626-9 IS - 1. Auflage SP - 1 EP - 89 PB - Beuth CY - Berlin AN - OPUS4-15994 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yagdjian, H. A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias A1 - Gurka, M. T1 - Application of the thermal shock response spectrum (TSRS) methodology to various forms of heat sources by pulse thermography and comparison by using a rotating line scan contour search algorithm N2 - In this paper, we propose a novel contour search algorithm (CSA) for image processing. Its efficacy is evaluated through a comparative analysis with established techniques such as Canny Edge and Snakes: Active contour models, utilizing infrared thermography (IRT) images. Based on the new CSA, we investigate the influence of different pulse shapes on the IRT post-processing methodology, particularly focusing on the thermal shock response spectrum (TSRS), using two different heat sources: xenon flash lamps and a laser. Moreover, this allows for a more precise quantitative comparison of the TSRS with existing IRT post-processing techniques, including pulse phase thermography and thermal signal reconstruction, concerning the detection of defects in composite materials, particularly in carbon fiber-reinforced polymer. A quantitative comparison was performed using the Tanimoto criterion and signal-to-noise ratio. A more detailed analysis is conducted to identify inherent limitations and potential benefits of the new TSRS methodology. We further investigate and experimentally confirm our previous finding on the qualitative correlation between the one-dimensional thermal N-layer model and test data from the TSRS optimization process for defect determination. This correlation can eliminate the time-consuming optimization step, making TSRS a more attractive alternative to common IRT methods and enhancing the quantitative description of defects. KW - Thermography KW - Non-destructive testing KW - NDT KW - Defect identification KW - Laser KW - Contour search PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615056 DO - https://doi.org/10.1063/5.0232015 SN - 1089-7550 VL - 136 IS - 175101 SP - 1 EP - 20 PB - AIP Publishing AN - OPUS4-61505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yagdjian, H. A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Gurka, M. T1 - Optimization of thermal shock response spectrum as infrared thermography post-processing methodology using Latin hypercube sampling and analytical thermal N-layer model N2 - In this work, we continue to develop and investigate the Thermal Shock Response Spectrum (TSRS) method as an alternative data processing method for infrared thermography (IRT). We focus on improving the current TSRS algorithm and present an optimization methodology for finding the optimal thermal Q-factor and characteristic frequency pair, which is based on the widely applied random sampling method. We show the qualitative relationship between the determined optimal characteristic frequency and the corresponding maximum difference in diffusion length between reference and defective models, as calculated by selecting a specific one-dimensional thermal N-layer model. The investigations were performed on an inhomogeneous plate made of carbon fiber reinforced polymer (CFRP) with artificial square defects at different depths. Furthermore, two different heat sources were used: a xenon flash lamp and a laser. These sources are not only distinct by their underlying physics but also generate inherently different pulse shapes. To quantitatively estimate the contrast between defect and non-defect areas, and to compare these results with commonly used infrared thermography (IRT) data postprocessing methods such as Pulse Phase Thermography (PPT) and Thermographic Signal Reconstruction (TSR), the Tanimoto criterion (TC) and signal-to-noise ratio (SNR) were used. KW - infrared thermography KW - Composite materials KW - TSRS optimization KW - Defect identification KW - Heat source shape KW - N-layers model KW - Latin Hypercube Sampling PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-614283 DO - https://doi.org/10.1016/j.infrared.2024.105582 SN - 1350-4495 VL - 143 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-61428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Yagdjian, H. A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Gurka, M. T1 - Optimization of thermal shock response spectrum as infrared thermography post-processing methodology using Latin hypercube sampling and analytical thermal N-layer model N2 - In this work, we continue to develop and investigate the Thermal Shock Response Spectrum (TSRS) method as an alternative data processing method for infrared thermography (IRT). We focus on improving the current TSRS algorithm and present an optimization methodology for finding the optimal thermal Q-factor and characteristic frequency pair, which is based on the widely applied random sampling method. We show the qualitative relationship between the determined optimal characteristic frequency and the corresponding maximum difference in diffusion length between reference and defective models, as calculated by selecting a specific one-dimensional thermal N-layer model. The investigations were performed on an inhomogeneous plate made of carbon fiber reinforced polymer (CFRP) with artificial square defects at different depths. Furthermore, two different heat sources were used: a xenon flash lamp and a laser. These sources are not only distinct by their underlying physics but also generate inherently different pulse shapes. To quantitatively estimate the contrast between defect and non-defect areas, and to compare these results with commonly used infrared thermography (IRT) data post-processing methods such as Pulse Phase Thermography (PPT) and Thermographic Signal Reconstruction (TSR), the Tanimoto criterion (TC) and signal-tonoise ratio (SNR) were used. KW - Infrared thermography KW - Composite materials KW - TSRS optimization KW - Defect identification KW - Heat source shape KW - N-layers model KW - Latin hypercube sampling PY - 2024 UR - https://ssrn.com/abstract=4910240 SP - 1 EP - 21 PB - Elsevier CY - New York, NY AN - OPUS4-60734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, Julien A1 - Schröpfer, Dirk A1 - Hamacher, M. A1 - Michels, H. A1 - Hamm, C. A1 - Appelt, M. A1 - Börner, Andreas A1 - Kannengießer, Thomas T1 - Tool development for hybrid finishing milling of iron aluminides N2 - The importance of high-temperature materials made of iron aluminides (FeAl) has been increasing in light weight applications, e.g., airplane turbines, due to the high material’s specific strength. However, the highly economic production by means of permanent mold casting involves special microstructures for Fe26Al4Mo0.5Ti1B alloy components leading to difficult machinability for subsequent finishing milling and low surface qualities. Major effects of tool and machining parameter variation incorporating ultrasonic assistance on the milling process and surface integrity are shown. Loads for tool and component surface are significantly adjustable to enable an economic process chain regarding the surface integrity of safety-relevant components. KW - Ultrasonic-assisted milling KW - Iron aluminide KW - Surface integrity KW - Tool wear PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566294 DO - https://doi.org/10.1016/j.procir.2022.03.123 SN - 2212-8271 VL - 108 SP - 793 EP - 798 PB - Elsevier B.V. AN - OPUS4-56629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien A1 - Schröpfer, Dirk A1 - Börner, Andreas A1 - Kannengießer, Thomas A1 - Michels, H. A1 - Hamm, C. A1 - Appelt, M. A1 - Hamacher, M. T1 - Ultraschallunterstütztes Fräsen zur Reduzierung der Belastung auf Werkzeug und Bauteiloberfläche von Eisenaluminid-Bauteilen N2 - Intermetallische Werkstoffe werden für Hochtemperaturanwendungen immer wichtiger. Insbesondere Aluminide mit hohen spezifischen Festigkeiten haben ein großes Potenzial für Leichtbauanwendungen, z. B. werden Titanaluminide bereits in Flugzeugturbinen eingesetzt. Ökonomische und ökologische Aspekte sind die treibende Kraft zur Substitution konventioneller Legierungen, z. B. Nickelbasislegierungen, die eine wesentlich höhere Kostenintensität und ein höheres Gewichts-Festigkeits-Verhältnis aufweisen. Insbesondere Eisenaluminide (FeAl) sind aufgrund guter mechanischer Eigenschaften und der guten Verfügbarkeit der wichtigsten Hauptlegierungselemente attraktiv. Speziell entwickelte FeAl-Legierungskonzepte ermöglichen eine wirtschaftliche Produktion im Kokillenguss, bei der die Erstarrung der Schmelze spezielle komplexe Gefüge ermöglicht, um die hohen thermischen und mechanischen Eigenschaften durch eine hohe Anzahl von harten Ausscheidungen entlang der Korngrenzen zu erreichen. Zu diesen Eigenschaften gehört aber auch, dass notwendige Bearbeitungsschritte, wie das Schlichtfräsen, zur Erzielung komplexer Endkonturen, zu vorzeitigem Werkzeugverschleiß und geringen Oberflächengüten führen. Für das finale FeAl-Bauteil ist eine hohe Oberflächenintegrität insbesondere in sicherheitsrelevanten Anwendungen in der Luftfahrt oder im Energiebereich erforderlich. Aus diesem Grund konzentriert sich die vorliegende Untersuchung auf die Mechanismen und die Minimierung des Werkzeugverschleißes und die Auswirkungen auf die Oberfläche eines in Kokille vergossenen FeAl-Bauteils. Neben den Optimierungen des Fräsprozesses und der Werkzeugparameter (Geometrie, Material) wird ein modernes hybrides Bearbeitungsverfahren, das ultra-schallunterstützte Fräsen (USAM), eingesetzt, bei dem eine Überlagerung mit einer hochfrequenten Schwingung des rotierenden Werkzeugs erzeugt wird. Analysen der Kräfte und Temperaturen im Fräsprozess, der Verschleißerscheinungen am Werkzeug und der Oberflächenintegrität zeigen positive Auswirkungen durch USAM. Darüber hinaus wird eine valide Grundlage für die Optimierung des Werkzeugs und des Fräsprozesses geschaffen, um eine hohe Oberflächenintegrität (z. B. Verringerung von Zugeigenspannungen und Defekten) und eine längere Werkzeuglebensdauer zu gewährleisten, die zukünftig eine wirtschaftliche Herstellung von FeAl-Bauteilen ermöglicht. T2 - 5. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 23.02.2023 KW - Eisenaluminid KW - Ultraschallunterstütztes Fräsen KW - Werkzeugverschleiß KW - Oberflächenintegrität PY - 2023 VL - 12 SP - 738 EP - 748 PB - Shaker Verlag CY - Düren AN - OPUS4-59219 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mayer-Enthart, Elke A1 - Sialelli, Julien A1 - Rurack, Knut A1 - Resch-Genger, Ute A1 - Köster, D. A1 - Seitz, H. T1 - Toward Improved Biochips Based on Rolling Circle Amplification - Influences of the Microenvironment on the Fluorescence Properties of Labeled DNA Oligonucleotides KW - Rolling circle amplification KW - Fluorescence KW - Biochips KW - Microarrays KW - Signal amplification KW - Cy3-labeled oligonucleotides KW - DNA technology PY - 2008 DO - https://doi.org/10.1196/annals.1430.022 SN - 0077-8923 SN - 1749-6632 SN - 0094-8500 VL - 1130 SP - 287 EP - 292 PB - New York Academy of Sciences CY - New York, NY AN - OPUS4-17633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -