TY - CONF A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Riedel, Juliane A1 - Rasenko, Tatjana A1 - Köppen, Robert A1 - Koch, Matthias T1 - Development of analytical method and certified reference material for zearalenone in edible oils N2 - Quality and safety of food products require their reliable analysis. Contaminants, in particular mycotoxins, are key-components for food safety. About 25 % of the world's food crops are contaminated with mycotoxins posing a severe health risk to humans. In order to strengthen food safety and consumer protection the European Commission (EC) set maximum levels for priority mycotoxins in certain foods for human consumption. In 2013, the EC and CEN (European Committee for Standardization) started an initiative to standardize analytical methods for mycotoxins in food which gained increasing relevance, e.g. zearalenone (ZEN).[1] ZEN, an estrogenic mycotoxin produced by several Fusarium species, contaminates cereal crops worldwide. Due to its lipophilic nature ZEN is often found in edible oils (particularly in maize germ oils) derived from contaminated plants. Therefore, an European maximum level of 400 µg/kg is currently in force.[2] To perform reliable food analysis a sustainable metrological infrastructure is of major importance enabling the quantification of priority mycotoxins (here: ZEN). To achieve this goal an integrated approach is needed targeted at the development of validated analytical methods and certified reference materials (CRM). A highly selective method for ZEN in edible oils will be presented, based on solid phase extraction (SPE) using hydrazine-functionalized particles. This method was developed for manual application using commercial SPE cartridges as well as for automated SPE-HPLC online coupling. While ZEN is covalently coupled to the solid phase by means of a hydrazone bond, undesired matrix components can be removed very efficiently. Finally, ZEN is decoupled from the solid phase, leading to highly purified extracts which are measured by HPLC-FLD. The development of the first European Reference Material (ERM®) for ZEN in maize germ oil (ERM®-BC715) will be presented and discussed. This ERM®-project underpins the urgent need for mycotoxin-CRMs to support food safety and public health. [1] European Commission (EC) Mandate M/520 (2013) for standardisation addressed to CEN for methods of analysis for mycotoxins in food. [2] Commission Regulation (EC) No 1126/2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. T2 - Anakon CY - Tübingen, Germany DA - 03.04.2017 KW - Mycotoxins KW - Food safety KW - Analytical method KW - Reference material PY - 2017 AN - OPUS4-39860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Haase, Hajo A1 - Koch, Matthias T1 - Electrochemical simulation of biotransformation reactions of citrinin and dihydroergocristine compared to UV irradiation and Fenton-like reaction N2 - Mycotoxins occur widely in foodstuffs and cause a variety of mold-related health risks to humans and animals. Elucidation of the metabolic fate of mycotoxins and the growing number of newly discovered mycotoxins have enhanced the demand for fast and reliable simulation methods. The viability of electrochemistry coupled with mass spectrometry (EC/ESI-MS), Fenton-like oxidation, and UV irradiation for the simulation of oxidative phase I metabolism of the mycotoxins citrinin (CIT) and dihydroergocristine (DHEC) was investigated. The specific reaction products are compared with metabolites produced by human and rat liver microsomes in vitro. Depending on the applied potential between 0 and 2000 mV vs. Pd/H-2 by using a flow-through cell, CIT and DHEC are oxidized to various products. Besides dehydrogenation and dealkylation reactions, several hydroxylated DHEC and CIT species are produced by EC and Fenton-like reaction, separated and analyzed by LC-MS/MS and ESI-HRMS. Compared to reaction products from performed microsomal incubations, several mono- and dihydroxylated DHEC species were found to be similar to the reaction products of EC, Fenton-like reaction, and UV-induced oxidation. Consequentially, nonmicrosomal efficient and economic simulation techniques can be useful in early-stage metabolic studies, even if one-to-one simulation is not always feasible. KW - Mycotoxins KW - In vitro KW - Electrochemistry KW - Oxidation PY - 2017 U6 - https://doi.org/10.1007/s00216-017-0350-6 SN - 1618-2642 VL - 409 IS - 16 SP - 4037 EP - 4045 PB - Springer CY - Heidelberg AN - OPUS4-40492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Electrochemistry coupled with LC/MS for production and characterization of mycotoxin oxidation products N2 - Mycotoxins cause a variety of mold-related health risks which makes it necessary to further examine their metabolic pathways in human and other mammals. Beside standard in vitro assays with liver cell microsomes an increasing interest in new and rapid simulation techniques are playing a growing role in mycotoxin research. Herein, the coupling of electrochemistry with liquid chromatography and mass spectrometry (EC/LC/MS) is presented as fast and simple method to investigate the oxidative fate of mycotoxins. For this case study, two food relevant mycotoxins (zearalenone and citrinin) were selected. Experiments were performed by using an electrochemical flow through cell integrated in the flow path of the autosampler of the chromatographic system. The reaction mixture was separated by a RP-C18 column and analyzed by a single quadrupole MS (Figure 1). Oxidation products were generated by applying potentials of 400, 800, 1200 and 1600 mV vs Pd/H2 using a glassy carbon working electrode. Different oxidation reactions like hydroxylation, dehydrogenation and dimerization lead to a diverse product pattern of the investigated mycotoxins. In a comparative study, electrochemical generated reaction products were compared with metabolites produced by human and rat liver microsomes in vitro. The obtained data show that EC/LC/MS is a versatile and promising tool in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - Tag der Chemie CY - Berlin, Germany DA - 03.07.2017 KW - Electrochemistry KW - Mycotoxins PY - 2017 AN - OPUS4-42980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Electrochemistry coupled with mass spectrometry - a versatile tool to investigate metabolic processes of mycotoxins N2 - To understand the metabolic fate of food relevant mycotoxins in vitro systems were mainly used as the method of choice, so far. Yet, in recent years coupling of electrochemistry mass spectrometry (EC-MS) gained increasing importance as promising technique for fast simulation of metabolic processes and was successfully applied in particular for drug metabolism [1]. The aim of our work was to investigate the potential of EC-MS to predict phase I metabolites of priority mycotoxins and to compare the results with in vitro experiments. Hence, the EU-regulated Fusarium mycotoxins zearalenone (ZEN) and patulin as well as dihydroergocristine (DHEC) as model compound of ergot alkaloids were electrochemically oxidized and analyzed by EC MS for the first time. Electrochemical conditions were set-up individually for each of the three mycotoxins. By using a coulometric flow through cell with a diamond working electrode oxidation of the chosen mycotoxins was observed after applying potentials between 1.7 and 2.0 V vs. Pd/H2. The electrochemically generated reaction products were analyzed online by mass-spectrometric detection. All of the three chosen mycotoxins were electrochemically converted to mono- and/or dihydroxylated products confirming the results of ZEN related metabolism studies [2, 3] and in case of DHEC own results from in vitro assays. Due to a lack of metabolism studies concerning the oxidative fate of patulin, interpretation of EC-MS data and performing microsomal studies is of particular relevance. Beside the identified products from electrochemical oxidation of ZEN, patulin and DHEC there is still a number of yet unknown compounds. Additional structural characterization of detected compounds by NMR and X-ray analysis will be facilitated by their large-scale production using preparative EC cells. T2 - Mycotoxin Workshop CY - Berlin, Germany DA - 02.05.2016 KW - Mycotoxins KW - Electrochemistry KW - Biotransformation KW - Mass spectrometry PY - 2016 AN - OPUS4-35981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Koch, Matthias T1 - Interactions of (1,3-dicarbonyl)-mycotoxins and metal ions N2 - Mycotoxins are secondary metabolites of fungi which have diverse detrimental effects on humans, animals and crops. Traceable worldwide in foods and animal feeds, these contaminants cause manifold diseases and extensive economic losses. Therefore, European legislation set maximum levels of distinct mycotoxins to minimize the risks for the buying public. But standardized food analysis techniques fail to detect masked mycotoxins, whose research increasingly moves to the fore in recent years. They are formed from detoxification metabolism of plants as well as from fungi, which conjugate for example with glucosides or dihexosides. All masked mycotoxins have one thing in common: They are not detectable with standard methods, thereby contributing to the overall exposure and pose an additional health risk for the consumer. The dissertation work will focus on the following potential new group of masked toxins. Food safety relevant mycotoxins like zearalenone and ochratoxin A possess one or more 1,3-dicarbonyl moieties. Latter are principally able to form thermodynamically stable chelate complexes with metal cations. First investigations at BAM showed interactions between zearalenone and copper ions and it is conceivable that they possibly build a complex. Our main focus is now to identify, characterize and quantify 1,3-dicarbonyl mycotoxin metal complexes as potential candidates within the group of conjugated mycotoxins. We will simulate processes of biotransformation and identify distinct metabolites by electrochemistry coupled to liquid chromatography/mass spectrometry (EC-HPLC-MS). The obtained knowledge contributes to a better understanding of masked mycotoxins and an improved monitoring of foods and feeds, to ensure food safety. T2 - BAM PhD Retreat CY - Wandlitz, Germany DA - 05.06.2015 KW - Mycotoxins KW - Metal ions PY - 2015 AN - OPUS4-38222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Menzel, R. A1 - Rueß, L. A1 - Koch, Matthias T1 - Toxicity assay for citrinin, zearalenone and zearalenone-14-sulfate using the nematode Caenorhabditis elegans as model organism N2 - To keep pace with the rising number of detected mycotoxins, there is a growing need for fast and reliable toxicity tests to assess the potential threat to food safety. Toxicity tests with the bacterial-feeding nematode Caenorhabditis elegans as model organism are well established. In this study the C. elegans wildtype strain N2 (var. Bristol) was used to investigate the toxic effects of the food-relevant mycotoxins citrinin (CIT) and zearalenone-14-sulfate (ZEA-14-S) and zearalenone (ZEA) on different life cycle parameters including reproduction, thermal and oxidative stress resistance and lifespan. The metabolization of the mycotoxins by the nematodes in vivo was investigated using HPLC-MS/MS. ZEA was metabolized in vivo to the reduced isomers α-zearalenol (α-ZEL) and β-ZEL. ZEA 14-S was reduced to α-/β-ZEL 14-sulfate and CIT was metabolized to mono-hydroxylated CIT. All mycotoxins tested led to a significant decrease in the number of nematode offspring produced. ZEA and CIT displayed negative effects on stress tolerance levels and for CIT an additional shortening of the mean lifespan was observed. In the case of ZEA-14-S, however, the mean lifespan was prolonged. The presented study shows the applicability of C. elegans for toxicity testing of emerging food mycotoxins for the purpose of assigning potential health threats. KW - Mycotoxins KW - Metabolization KW - Toxicity testing KW - Biotests PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-455772 VL - 10 IS - 7 SP - 284, 1 EP - 12 PB - MDPI AN - OPUS4-45577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Rueß, L. A1 - Menzel, R. A1 - Koch, Matthias T1 - Using the model organism Caenorhabditis elegans for the toxicity testing of citrinin, zearalenone and zearalenone-14-sulfate N2 - To keep up with emerging mycotoxins and their transformation products fast and reliable toxicity tests are needed. Toxicity testing of mycotoxins is carried out usually by performing in vitro assays or is evaluated by using laboratory animals like mice, rats or chicken in in vivo studies. Settled between classical in vitro approaches and in vivo studies with higher animals are tests with the nematode Caenorhabditis elegans. Since Sydney Brenner described 1974 the cultivation and handling of C. elegans, this worm is widely used as model organism in developmental biology and neurology. Due to many benefits like easy and cheap cultivation, a completely sequenced genome and short generation time, it also plays an important role in toxicological research. Finally, the high number of conserved genes between human and C. elegans make the worm an ideal candidate for toxicological investigations. In this study we used C. elegans to assess the toxic effects of the relevant food mycotoxin citrinin (CIT), the mycoestrogen zearalenone (ZEN) and the modified mycotoxin ZEN-14-sulfate (ZEN-14-S) on different lifetable parameters including reproduction, thermal and oxidative stress tolerance and lifespan. All tested mycotoxins significantly decreased the amount of offspring. In case of ZEN and CIT also significant negative effects on stress tolerance and lifespan were observed compared to the control group. Moreover, metabolization of mycotoxins in the worms was investigated by using LC MS/MS. Extraction of the worms treated 5 days with mycotoxin-containing and UVC-killed bacteria showed metabolization of ZEN to α-ZEL and β-ZEL (ZEL = zearalenol, ratio about 3:2). ZEN 14-S was reduced to ZEL 14-S and CIT was metabolized to mono hydroxylated CIT. T2 - 40th Mycotoxin Workshop CY - Munich, Germany DA - 11.06.2018 KW - Mycotoxins KW - Caenorhabditis elegans KW - Toxicity testing PY - 2018 AN - OPUS4-45170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -