TY - CONF A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Electrochemistry coupled with mass spectrometry - a versatile tool to investigate metabolic processes of mycotoxins N2 - To understand the metabolic fate of food relevant mycotoxins in vitro systems were mainly used as the method of choice, so far. Yet, in recent years coupling of electrochemistry mass spectrometry (EC-MS) gained increasing importance as promising technique for fast simulation of metabolic processes and was successfully applied in particular for drug metabolism [1]. The aim of our work was to investigate the potential of EC-MS to predict phase I metabolites of priority mycotoxins and to compare the results with in vitro experiments. Hence, the EU-regulated Fusarium mycotoxins zearalenone (ZEN) and patulin as well as dihydroergocristine (DHEC) as model compound of ergot alkaloids were electrochemically oxidized and analyzed by EC MS for the first time. Electrochemical conditions were set-up individually for each of the three mycotoxins. By using a coulometric flow through cell with a diamond working electrode oxidation of the chosen mycotoxins was observed after applying potentials between 1.7 and 2.0 V vs. Pd/H2. The electrochemically generated reaction products were analyzed online by mass-spectrometric detection. All of the three chosen mycotoxins were electrochemically converted to mono- and/or dihydroxylated products confirming the results of ZEN related metabolism studies [2, 3] and in case of DHEC own results from in vitro assays. Due to a lack of metabolism studies concerning the oxidative fate of patulin, interpretation of EC-MS data and performing microsomal studies is of particular relevance. Beside the identified products from electrochemical oxidation of ZEN, patulin and DHEC there is still a number of yet unknown compounds. Additional structural characterization of detected compounds by NMR and X-ray analysis will be facilitated by their large-scale production using preparative EC cells. T2 - Mycotoxin Workshop CY - Berlin, Germany DA - 02.05.2016 KW - Mycotoxins KW - Electrochemistry KW - Biotransformation KW - Mass spectrometry PY - 2016 AN - OPUS4-35981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Koch, Matthias T1 - Simulating biotransformation reactions of citrinin by electrochemistry/mass spectrometry N2 - Mycotoxins can be found worldwide in food and feed and cause a variety of mold-related health risks which makes it necessary to further examine their metabolic fate in human and other mammals. Beside standard in vitro assays with liver cell preparations an increasing interest in new simulation methods are playing a growing role. The online coupling of electrochemistry with mass spectrometry (EC/MS) is one of these novel techniques, successfully applied in pharmacological and drug research for several years now. The primary objective of this study was to investigate the capability of EC/MS to elucidate metabolic pathways of the mycotoxin citrinin as relevant food contaminant. For this purpose, a coulometric flow through cell equipped with a glassy carbon working electrode was used by applying a ramped potential between 0 and 2 V vs Pd/H2. The electrochemically generated oxidation products analyzed by EC/MS were compared to those obtained from in vitro assays. To receive a comprehensive assessment of EC/MS other non-microsomal oxidation techniques such as Fenton-like reaction and UV irradiation were applied. Several hydroxylated derivatives of citrinin were generated by EC/MS and Fenton-like reaction which are similar to microsomal biotransformation products. These data show that EC/MS is a versatile tool that can be easily applied in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - ANAKON CY - Tübingen, Deutschland DA - 03.04.2017 KW - Electrochemistry KW - Citrinin KW - Mass spectrometry PY - 2017 AN - OPUS4-39765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -