TY - CONF A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Koch, Matthias T1 - Simulating biotransformation reactions of citrinin by electrochemistry/mass spectrometry N2 - Mycotoxins can be found worldwide in food and feed and cause a variety of mold-related health risks which makes it necessary to further examine their metabolic fate in human and other mammals. Beside standard in vitro assays with liver cell preparations an increasing interest in new simulation methods are playing a growing role. The online coupling of electrochemistry with mass spectrometry (EC/MS) is one of these novel techniques, successfully applied in pharmacological and drug research for several years now. The primary objective of this study was to investigate the capability of EC/MS to elucidate metabolic pathways of the mycotoxin citrinin as relevant food contaminant. For this purpose, a coulometric flow through cell equipped with a glassy carbon working electrode was used by applying a ramped potential between 0 and 2 V vs Pd/H2. The electrochemically generated oxidation products analyzed by EC/MS were compared to those obtained from in vitro assays. To receive a comprehensive assessment of EC/MS other non-microsomal oxidation techniques such as Fenton-like reaction and UV irradiation were applied. Several hydroxylated derivatives of citrinin were generated by EC/MS and Fenton-like reaction which are similar to microsomal biotransformation products. These data show that EC/MS is a versatile tool that can be easily applied in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - ANAKON CY - Tübingen, Deutschland DA - 03.04.2017 KW - Electrochemistry KW - Citrinin KW - Mass spectrometry PY - 2017 AN - OPUS4-39765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Electrochemistry-mass spectrometry (EC-MS) as a versatile tool to simulate the biotransformation of citrinin – A comparative study N2 - Mycotoxins can be found worldwide in foods and feed and cause a variety of mold-related health risks which makes it necessary to further examine their toxic effects and metabolic fate in human and other mammals. Beside standard in vitro and in vivo assays with liver cell preparations or rodents an increasing interest in new simulation methods are playing a growing role. Electrochemistry (EC) is one of these novel techniques and has been used successfully and efficiently in pharmacological and drug research for several years now. The primary objective of this study was to determine the capability of EC as a supportive and versatile instrument to elucidate metabolic pathways of mycotoxins. On the example of the food relevant mycotoxin Citrinin a coulometric flow through cell equipped with a carbon working electrode was used to oxidize Citrinin by applying potential between 0.7 and 2.5 V vs. Pd/H2. The electrochemically generated oxidation products were then analyzed by mass-spectrometric detection coupled online to EC (EC-MS) and compared with data from a standard in vitro model with human and rat liver microsomes preparations. To receive a comprehensive assessment of oxidative techniques chemical oxidation by Fenton´s reaction was performed as well. The obtained LC-MS/MS data confirmed the production of Dihydrocitrinone by all of the three tested oxidation systems and demonstrates the potential of EC-MS for the successful prediction of the main phase I metabolic reactions of mycotoxins, since Dihydrocitrinone is the mainly formed metabolite by humans after intake of Citrinin. Beside the identified Dihydrocitrinone from electrochemical, enzymatic and chemical oxidation of Citrinin there is still a number of yet unknown compounds. As the next step structural characterization of the generated oxidation products by NMR and X-ray analysis will be enabled by their large-scale production using preparative EC cells. T2 - Rapid Methods CY - Amsterdam, The Netherlands DA - 07.11.2016 KW - Electrochemistry KW - Mycotoxin KW - Oxidation PY - 2016 AN - OPUS4-38215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Electrochemistry coupled with LC/MS for production and characterization of mycotoxin oxidation products N2 - Mycotoxins cause a variety of mold-related health risks which makes it necessary to further examine their metabolic pathways in human and other mammals. Beside standard in vitro assays with liver cell microsomes an increasing interest in new and rapid simulation techniques are playing a growing role in mycotoxin research. Herein, the coupling of electrochemistry with liquid chromatography and mass spectrometry (EC/LC/MS) is presented as fast and simple method to investigate the oxidative fate of mycotoxins. For this case study, two food relevant mycotoxins (zearalenone and citrinin) were selected. Experiments were performed by using an electrochemical flow through cell integrated in the flow path of the autosampler of the chromatographic system. The reaction mixture was separated by a RP-C18 column and analyzed by a single quadrupole MS (Figure 1). Oxidation products were generated by applying potentials of 400, 800, 1200 and 1600 mV vs Pd/H2 using a glassy carbon working electrode. Different oxidation reactions like hydroxylation, dehydrogenation and dimerization lead to a diverse product pattern of the investigated mycotoxins. In a comparative study, electrochemical generated reaction products were compared with metabolites produced by human and rat liver microsomes in vitro. The obtained data show that EC/LC/MS is a versatile and promising tool in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - Tag der Chemie CY - Berlin, Germany DA - 03.07.2017 KW - Electrochemistry KW - Mycotoxins PY - 2017 AN - OPUS4-42980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Coupling of electrochemistry with LC/MS for generation and identification of mycotoxin oxidation products N2 - Mycotoxins cause a variety of mold-related health risks which makes it necessary to further examine their metabolic pathways in human and other mammals. Beside standard in vitro assays with liver cell microsomes an increasing interest in new and rapid simulation techniques are playing a growing role in mycotoxin research. Herein, the coupling of electrochemistry with liquid chromatography and mass spectrometry (EC/LC/MS) is presented as fast and simple method to investigate the oxidative fate of mycotoxins. For this case study, two food relevant mycotoxins (zearalenone and citrinin) were selected. Experiments were performed by using an electrochemical flow through cell integrated in the flow path of the autosampler of the chromatographic system. The reaction mixture was separated by a RP-C18 column and analyzed by a single quadrupole MS (Figure 1). Oxidation products were generated by applying potentials of 400, 800, 1200 and 1600 mV vs Pd/H2 using a glassy carbon working electrode. Different oxidation reactions like hydroxylation, dehydrogenation and dimerization lead to a diverse product pattern of the investigated mycotoxins. In a comparative study, electrochemical generated reaction products were compared with metabolites produced by human and rat liver microsomes in vitro. The obtained data show that EC/LC/MS is a versatile and promising tool in mycotoxin research to support metabolic investigations of known and unknown mycotoxins. T2 - Mycotoxin Workshop CY - Bydgoszcz, Poland DA - 19.06.2017 KW - Electrochemistry KW - Mycotoxin KW - LC/MS KW - Oxidation PY - 2017 AN - OPUS4-40779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -