TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. A1 - Lozano Guzmán, A. A. T1 - A real-time GPS scheme to assess safe driving skills N2 - GPS-data based calculation scheme for assessing, in real-time, the level of safety exerted during driving, has been described and used. The several variables involved considered the main factors that lead to road mishaps, including the speed, the acceleration and the effects that these variables have on the vehicle when it is negotiating a turn. The performance measure combines three individual performance outputs: speed, acceleration and a hybrid performance measure considering the speed, the acceleration and the change in latitude/longitude. The measures are designed in such a way that weighting factors can be calibrated in order to establish certain critical parameters. On the other hand, the terms in the equations preclude any division by zero of the involved ratios. On the other hand, the simplicity of the equations makes it possible to carry out the assessment in real time. The use of the resultant performance measure to a relatively long path, together with its current average value, indicates that the safe performance of the driving changes with time, and that, for the selected values of the calibration constants, the traveling speed dominates the overall safety performance of the driving. Furthermore, the different calibration constants provide the possibility of considering different types of hazmat carrying vehicles. While many other formulation components could be integrated into the performance measure, this three-component performance measure could be used to assess the driving of a hazmat-carrying vehicle, in order to detect and to prevent dangerous conditions, such as driver fatigue. Finally, the implementation of the different performance measure formulations in a system such as the one described in the introduction of this paper, could be straightforward. T2 - ICASAT – 2019 – IEEE international Conference on Applied Science and Advanced Technology CY - Queretaro, México DA - 27.11.2019 KW - GPS KW - Scheme KW - Safe KW - Driving PY - 2019 SP - 1 EP - 6 AN - OPUS4-49984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Obregón Biosca, S. A. ED - Romero-Navarrete, José A. T1 - Effective assessment and management of railway infrastructure for competitiveness and sustainability N2 - In this chapter the challenges facing railways have been illustrated through the description of two important events occurring in different geographical areas. While the explosion in Quebec, Canada, points out the importance of taking away the transportation infrastructure from highly populated areas; the disruption of the European railway network in Rastatt, Germany, describes the importance of designing alternative routes to critical railway segments, together with the need to have contingency plans to face extraordinary situations regarding the connectivity in a given transport network. Future research efforts are recognized in relation with the railway car – track interaction, as the dynamic loads derived from such interaction could be reducing the life of such infrastructure. It is particularly important for infrastructures dedicated to the transportation of liquid hazardous substances. KW - Railway KW - Infrastructure PY - 2018 SN - 978-1-53614-059-0 SP - Chapter 5, 1 EP - 23 PB - Nova Science Publishers, 2018 AN - OPUS4-45150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Betanzo Quezada, E. A1 - Obregón Biosca, S. A. T1 - The railway transport sustainability in Mexico. Europe and Mexico perspective N2 - The use of railway transportation for satisfying the transport needs of goods in Mexico is less intense than in developed countries, such as Germany. Mexican performance measures based upon the railway length per capita (intensity), or the railway length per square km of the country surface (density), are well behind from corresponding indicators for Germany, in such a way that the length of the railway infrastructure of Mexico should be, at least, doubled in order to reach a comparable intensity rate as that of Germany. In this paper, the benefits from transferring the whole transportation of goods from road to railway, is discussed. The benefits include a remarkable reduction in energy consumption and CO2 emissions. The feasibility for the electrical infrastructure to provide the necessary energy is further shown, while the economic feasibility of such situation is analyzed on the basis of the federal budget of Mexico. According to these estimations, the investment in railway infrastructure is feasible, while the electrical installed capacity is enough to satisfy an all-electric system. T2 - XIV Congreso Internacional de Ingenieria (XIV International Engineering Congress) CY - Querétaro, Mexico DA - 14.05.2018 KW - Railways KW - Trucking KW - Transport externalities KW - Comparative assessment KW - Energy saving potentials PY - 2018 SN - 978-1-5386-7018-7 SP - 1 EP - 4 PB - IEEE AN - OPUS4-45823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. A1 - Jáuregui Correa, J.C.A. T1 - Forces on rails in turns: A review N2 - Regardless of the mode of transportation, directional changes generate greater forces on the infrastructure as a result of the lateral load transfer and of the respective steering forces in the vehicles. In the case of Railway transportation, a concentrated damage occurs in the rail at the initiation of the turning maneuver, whose magnitude depends on the bogie´s yaw stiffness and on the level of friction at its centre plate. To mitigate such rail-damaging effects, some new designs have been proposed and used for the bogies´ wheelset. However, no new designs for the centre plate have been used. In this paper, a review of the causality for the forces arising during Railway Vehicle's turn negotiations, is presented, including the description of a modeling framework to analyze the influential Parameters for determining the magnitude of such forces. T2 - CONIIN 2020 CY - Online meeting DA - 28.09.2020 KW - Turning maneuvers KW - Rail damage KW - Yaw stiffness KW - Yaw resistance KW - Self-aligning bogies KW - Lateral load transfer KW - Steering forces PY - 2020 SP - 1 EP - 6 AN - OPUS4-51390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. T1 - An energy frame of reference to assess vehicle´s physical externalities (IMECE 2020-23745) N2 - As a result of the vehicle – infrastructure interaction, both systems deteriorate. The development of performance measures about such effects, is critical to find ways to mitigate these systems deterioration. We propose an energy approach to such an assessment: The transient energy stored in the pavement. The transient strain energy stored in the vehicle suspension. T2 - IMECE 2020 CY - Online meeting DA - 16.11.2020 KW - Energy KW - Frame KW - Assess KW - Vehicles PY - 2020 AN - OPUS4-51642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - Modelling a partly filled road tanker during an emergency braking N2 - A simplified model, based upon physical principles, is proposed the simulate the effect of sloshing on the pressure developed in the tanker chambers. The model has been validated in good extent, with experimental data from full scale testing. The characteristic that mostly affects the pressure developed with the chambers of the tanker is the length of the chamber. While a reduction in this property could decrease the pressure developed within a given chamber, the analysis should take into account an overall approach, as a shortening of the individual chambers would influence the number of chambers necessary to carry a certain amount of product. Consequently, the resulting model could be used to study different effects of the sloshing cargo on the carrying vehicles, including the length and position of the chambers along the tanker body. T2 - WCECS 2017 CY - San Francisco, CA, USA DA - 25.10.2017 KW - Braking KW - Emergency KW - Tanker PY - 2017 UR - http://www.iaeng.org/publication/WCECS2017/ SN - 978-988-14048-4-8 SN - 2078-0958 VL - II SP - 610 EP - 614 AN - OPUS4-42957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. T1 - A GPS data – based overall performance measure for heavy trucks N2 - Systems that assess the driving styles and provide a feedback about the driving style (ECO driving App; Ecological Drive Display on Dashboard). Smoothness of driving, with decelerations and accelerations in a given range. -The issue of safety Vs Eco driving –Keeping the right distance with the vehicle in front. T2 - 4th International Workshop on Sustainable Road Freight CY - Cambridge, UK DA - 30.11.2017 KW - GPS-data systems KW - Driving styles KW - Ecological drive display PY - 2017 AN - OPUS4-43322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - A simplified model to simulate the pitch instability of a partially filled tank trailer N2 - Singular situation of pitch instability, modeled through simplified models. More analysis is required to proposed vehicle design improvements. T2 - IMECE 2017 CY - Tampa, FL, USA DA - 03.11.2017 KW - Pitch instability KW - Tank trailer KW - Simulation PY - 2017 AN - OPUS4-42851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - Modelling a partly filled road tanker during an emergency braking N2 - Figure 10 illustrates the theoretical results from the simplified model considered, together with the experimental data. These results and measurements are presented one next to the other, in order to facilitate the validity analysis of the proposed simulation methodology. These results illustrate that the trends are comparable for both sets of data, that is, a similar range is obtained for all of the variables reported. A lower pressure is generated in chamber 5, which is attributed to the shorter length of this chamber. However, such increase in pressure does not correspond exactly to the difference of lengths, as the ratio of lengths would cause a differential pressure of 2.3/1.23 = 1.86, while the ratio of average pressures is on the order of 2. That is, there is an incremental, which is associated to the maximum height attained by the fluid in the chamber. The major difference between both sets of data, the experimental and theoretical, is that the theoretical do not include much of the noise and random oscillations reported in the experimental data. Such noise, however, is of very low amplitude, in comparison with the maximum values attained. The practical applications of these results could be in the area of chamber design, so that the effects of the length of the chambers be taken into account. That is, such greater lengths for the fluid in the chamber would involve larger pressures and consequently, greater stresses. However, the analysis should include an overall perspective, that is, the shortening of the chambers would imply an increase in the number of chambers, for a certain total payload, and the superposition effect of pressures, should be considered. On the other hand, the analysis could be extended to characterize the effects of the distribution of the lengths of the different chambers along the axis of the tanker, as the different resulting forces could have different effects on the pitch response of the road tanker. T2 - WCECS 2017 CY - San Francisco, CA, USA DA - 25.10.2017 KW - Tanker KW - Emergency KW - Braking PY - 2017 AN - OPUS4-42854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - Analysis of the capsizing of a tanker in the Rhine river N2 - A dynamic simulation model for a tanker ship along the Rhine River has been proposed, based on a simplified computational scheme, involving a two-degree-of-freedom roll plane multibody system, subjected to lateral accelerations estimated on the basis of measured data. The resulting equations of motion are solved through the transition matrix approach. The results suggest that many contributing factors were involved in the capsizing of the ship, including the relatively high speed of the river water and the meandering path of the infrastructure, further affected by dynamic effects derived from the behavior of the payload and from the steering maneuvers performed. T2 - ASME 2017 IMECE CY - Tampa, FL, USA DA - 03.11.2017 KW - Capsizing KW - Tanker KW - Rhine river PY - 2017 SN - 978-0-7918-5837-0 VL - 4A SP - Article UNSP V04AT05A063, 70488 EP - 70495 PB - ASME Press AN - OPUS4-42928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -