TY - JOUR A1 - Das, Prasenjit A1 - Chakraborty, Gouri A1 - Yang, Jin A1 - Roeser, Jérôme A1 - Küçükkeçeci, Hüseyin A1 - Nguyen, Anh Dung A1 - Schwarze, Michael A1 - Gabriel, Jose A1 - Penschke, Christopher A1 - Du, Shengjun A1 - Weigelt, Vincent A1 - Khalil, Islam E. A1 - Schmidt, Johannes A1 - Saalfrank, Peter A1 - Oschatz, Martin A1 - Rabeah, Jabor A1 - Schomäcker, Reinhard A1 - Emmerling, Franziska A1 - Thomas, Arne T1 - The Effect of Pore Functionality in Multicomponent Covalent Organic Frameworks on Stable Long‐Term Photocatalytic H2 Production N2 - AbstractIn nature, organic molecules play a vital role in light harvesting and photosynthesis. However, regarding artificial water splitting, the research focus is primarily on inorganic semiconductors. Although organic photocatalysts have high structural variability, they tend to exhibit lower quantum efficiencies for water splitting than their inorganic counterparts. Multicomponent reactions (MCRs) offer an attractive route to introduce different functional units into covalent organic frameworks (COFs) and enable semiconducting properties and high chemical stability, creating promising materials for long‐term photocatalytic applications, such as H2 production. Herein, five highly crystalline donor‐acceptor based, 4‐substituted quinoline‐linked MCR‐COFs are presented that are prepared via the three‐component Povarov reaction. The pore functionality is varied by applying different vinyl derivatives (e.g., styrene, 2‐vinyl pyridine, 4‐vinylpyridine, 4‐vinyl imidazole, 2,3,4,5,6‐pentafluorostyrene), which has a strong influence on the obtained photocatalytic activity. Especially an imidazole‐functionalized COF displays promising photocatalytic performance due to its high surface area, crystallinity, and wettability. These properties enable it to maintain its photocatalytic activity even in a membrane support. Furthermore, such MCR‐COFs display dramatically enhanced (photo)chemical stability even after long‐term solar light irradiation and exhibit a high and steady H2 evolution for at least 15 days. KW - Sstability KW - Covalent organic frameworks KW - Pore functionality KW - Long-term H2 production KW - Multicomponent reactions PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639787 DO - https://doi.org/10.1002/aenm.202501193 SN - 1614-6832 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-63978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, Prasenjit A1 - Chakraborty, Gouri A1 - Friese, Nico A1 - Roeser, Jérôme A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - Schmidt, Johannes A1 - Thomas, Arne T1 - Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions N2 - Multicomponent reactions (MCRs) offer a platform to create different chemical structures and linkages for highly stable covalent organic frameworks (COFs). As an illustrative example, the multicomponent Povarov reaction generates 2,4-phenylquinoline from aldehydes and amines in the presence of electron-rich alkenes. In this study, we introduce a new domino reaction to generate unprecedented 2,3-phenylquinoline COFs in the presence of epoxystyrene. This work thus presents, for the first time, structural isomeric COFs produced by multicomponent domino and Povarov reactions. Furthermore, 2,3-phenylquinolines can undergo a Scholl reaction to form extended aromatic linkages. With this approach, we synthesize two thermally and chemically stable MCR-COFs and two heteropolyaromatic COFs using both domino and in situ domino and Scholl reactions. The structure and properties of these COFs are compared with the corresponding 2,4-phenylquinoline-linked COF and imine-COF, and their activity toward benzene and cyclohexane sorption and separation is investigated. The position of the pendant phenyl groups within the COF pore plays a crucial role in facilitating the industrially important sorption and separation of benzene over cyclohexane. This study opens a new avenue to construct heteropolyaromatic COFs via MCR reactions. KW - COF PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604038 DO - https://doi.org/10.1021/jacs.4c02551 SP - 1 EP - 9 PB - American Chemical Society (ACS) AN - OPUS4-60403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass – thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - European Microbeam Analysis Society’s 14th European Workshop on Modern Developments and Applications in Microbeam Analysis (EMAS 2015) CY - Portorož, Slovenia DA - 03.05.2015 KW - High-resolution KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355628 UR - http://iopscience.iop.org/article/10.1088/1757-899X/109/1/012006 DO - https://doi.org/10.1088/1757-899X/109/1/012006 SN - 1757-899X VL - 109 SP - 012006-1 EP - 012006-12 PB - IOP Publishing Ltd CY - Bristol, UK AN - OPUS4-35562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis CY - Portoroz, Slovenia DA - 03.05.2015 KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles KW - High-resolution PY - 2015 SN - 978-90-8227-691-6 DO - https://doi.org/10.1088/1757-899X/109/1/012006 SP - NUR code:972 - Materials Science, 187-199 AN - OPUS4-33258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Schmidt, R. A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Customizing New Titanium Dioxide Nanoparticles with Controlled Particle Size and Shape Distribution: A Feasibility Study Toward Reference Materials for Quality Assurance of Nonspherical Nanoparticle Characterization N2 - An overview is given on the synthesis of TiO2 nanoparticles with well-defined nonspherical shapes (platelet like, bipyramidal, and elongated), with the focus on controlled, reproducible synthesis, as a key requirement for the production of reference materials with homogeneous and stable properties. Particularly with regard to the nanoparticle shapes, there is a high need of certified materials, solely one material of this type being commercially available since a few months (elongated TiO2). Further, measurement approaches with electron microscopy as the golden method to tackle the nanoparticle shape are developed to determine accurately the size and shape distribution for such nonspherical particles. A prerequisite for accurate and easy (i.e., automated) image analysis is the sample preparation, which ideally must ensure a deposition of the nanoparticles from liquid suspension onto a substrate such that the particles do not overlap, are solvent-free, and have a high deposition density. Challenges in the Synthesis of perfectly monodispersed and solvent-free TiO2 nanoparticles of platelet and acicular shapes are highlighted as well as successful measurement approaches on how to extract from 2D projection electron micrographs the most accurate spatial information, that is, true 3D size, for example, of the bipyramidal nanoparticles with different geometrical orientations on a substrate. KW - Nanoparticles KW - Titanium dioxide KW - Reference materials KW - Standardisation KW - Particle size and shape distribution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538849 DO - https://doi.org/10.1002/adem.202101347 VL - 24 IS - 6 SP - 1 EP - 10 PB - Wiley-VCH AN - OPUS4-53884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kleba-Ehrhardt, Rafael A1 - Dávila, Josué A1 - Geissler, Johann A1 - Mohr, Gunther A1 - Schmidt, Johannes A1 - Heinze, Christoph A1 - Hilgenberg, Kai A1 - Gurlo, Aleksander A1 - Karl, David T1 - Influence of Haynes 282 powder oxidation on powder properties and component quality in laser powder bed fusion N2 - Reuse of powder in powder bed additive manufacturing is a common practice to enhance sustainability and reduce costs. However, the reusability of metal powder is limited by the oxidation of the powders. Even in a protective atmosphere, each build job leads to gradual oxidation of the powder, which has led to concerns about its impact on powder and part properties. Consequently, strict confidence intervals for oxygen content in nickel-based alloy feedstocks are enforced in the industry. Despite this, there is currently a lack of in-depth studies investigating the specific influence of oxygen on Haynes 282, a widely used nickel-based alloy. This study examines artificially aged Haynes 282 powder batches with oxygen content of 160 ppm, 330 ppm, 1050 ppm, and 1420 ppm. Detailed powder characterization was performed, including morphology, chemical composition, particle size, flowability, and packing behavior. Components were fabricated via PBF-LB/M to evaluate density and mechanical properties. The results showed that higher oxidation levels improved powder flowability and packing density. However, in manufactured parts, irregular melt tracks and increased surface roughness were observed, which could easily be removed by post-processing. No significant differences in density or mechanical properties at room temperature, such as tensile strength and elongation, were found. These findings indicate that H282 powder potentially remains suitable for reuse, even when the batches exhibit increased oxygen content, supporting discussions on revising the existing oxygen content confidence intervals for nickel-based alloys. The results highlight the potential for optimizing recycling strategies and reducing material waste in additive manufacturing processes. KW - Additive manufacturing KW - Powder bed fusion KW - Powder characterization KW - Powder oxidation KW - Powder recycling PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654545 DO - https://doi.org/10.1016/j.addma.2025.105050 SN - 2214-8604 VL - 116 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-65454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -