TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis CY - Portoroz, Slovenia DA - 03.05.2015 KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles KW - High-resolution PY - 2015 SN - 978-90-8227-691-6 U6 - https://doi.org/10.1088/1757-899X/109/1/012006 SP - NUR code:972 - Materials Science, 187-199 AN - OPUS4-33258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass – thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - European Microbeam Analysis Society’s 14th European Workshop on Modern Developments and Applications in Microbeam Analysis (EMAS 2015) CY - Portorož, Slovenia DA - 03.05.2015 KW - High-resolution KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-355628 UR - http://iopscience.iop.org/article/10.1088/1757-899X/109/1/012006 SN - 1757-899X VL - 109 SP - 012006-1 EP - 012006-12 PB - IOP Publishing Ltd CY - Bristol, UK AN - OPUS4-35562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. A1 - Hodoroaba, Vasile-Dan T1 - Evaluation of electrospray as a sample preparation tool for electron microscopic investigations: Toward quantitative evaluation of nanoparticles N2 - The potential of electrospray deposition, for the controlled preparation of particles for imaging in electron microscopes, is evaluated on various materials: from mono-modal suspensions of spherical particles to multimodal suspensions and to real-world industrial materials. It is shown that agglomeration is reduced substantially on the sample carrier, compared with conventional sample preparation techniques. For the first time, it is possible to assess the number concentration of a tri-modal polystyrene suspension by electron microscopy, due to the high Deposition efficiency of the electrospray. We discovered that some suspension stabilizing surfactants form artifact particles during electrospraying. These can be avoided by optimizing the sprayed suspension. KW - Electrospary KW - Nanoparticles KW - Sample preparation KW - TEM grid KW - SEM PY - 2017 U6 - https://doi.org/10.1017/S1431927616012587 SN - 1431-9276 SN - 1435-8115 VL - 23 IS - 1 SP - 163 EP - 172 PB - Cambridge University Press AN - OPUS4-39244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - Lopez, S. A1 - Hodoroaba, Vasile-Dan T1 - Electrospray as a sample preparation tool for electron microscopic investigations: Toward quantitative evaluation of nanoparticles N2 - The potential of electrospray deposition, for the controlled preparation of particles for imaging in electron microscopes, is evaluated on various materials: from mono-modal suspensions of spherical particles to multimodal suspensions and to real-world industrial materials. It is shown that agglomeration is reduced substantially on the sample carrier, compared with conventional sample preparation techniques. For the first time, it is possible to assess the number concentration of a tri-modal polystyrene suspension by electron microscopy, due to the high deposition efficiency of the electrospray. We discovered that some suspension stabilizing surfactants form artifact particles during electrospraying. These can be avoided by optimizing the sprayed suspension. KW - Electrospray deposition KW - Nanoparticles KW - SEM KW - TEM KW - Sample preparation PY - 2017 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electrospray-as-a-sample-preparation-tool-for-electron-microscopic-investigations-toward-quantitative-evaluation-of-nanoparticles/483B212FF290B7EC001A212A19E4E72A U6 - https://doi.org/10.1017/S1431927617010145 SN - 1435-8115 SN - 1431-9276 VL - 23 IS - S1 (July) SP - 1896 EP - 1897 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-42453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -