TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes T1 - Techniques evaluation report for selection of characterisation methods N2 - This report is the result of a comprehensive study on the available CMs which come potentially in question for the reliable analysis of the number based size distribution of a nanomaterial according to the EC recommendation for a definition of nanomaterial. Based on the performance criteria already established in NanoDefine the potential CMs are evaluated according to studies available in the literature as well as following the expertise of the NanoDefine consortium partners. The specific advantages and disadvantages of each method with respect to its applicability to the scope of NanoDefine are particularly highlighted. An CM evaluation table is produced so that the mostly suited CMs with respect to the EC definition can be grouped and recommended to the corresponding NanoDefine work packages for further specific development (improvement and adaption), or for direct validation and standardisation, respectively. The actual evaluation report including the recommended CMs will be revised and, if necessary, eventually updated at the mid time of the project. The update will be jointly discussed in the NanoDefine consortium on the basis of the results of testing the methods on the NanoDefine real world materials. KW - Nanomaterial KW - Characterization method KW - EC definition PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389473 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D3.1.pdf SP - D3.1, 1 EP - 57 CY - Wageningen, The Netherlands AN - OPUS4-38947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes T1 - Templates for nanomaterial characterisation of tier 1 and tier 2 measurement methods N2 - The EU FP7 NanoDefine project was launched in November 2013 and will run until October 2017. The Project is dedicated to support the implementation of the EU Recommendation on the Definition of Nanomaterial by the provision of the required analytical tools and respective guidance. Main goal is to develop a novel tiered approach consisting of (i) rapid and cost-efficient screening methods and (ii) confirmatory measurement methods. The "NanoDefiner" eTool will guide potential end-users, such as concerned industries and regulatory bodies as well as enforcement and contract laboratories, to reliably classify if a material is nano or not. To achieve this objective, a comprehensive inter-laboratory evaluation of the performance of current characterisation techniques, instruments and software is performed. Instruments, software and methods are further developed. Their capacity to reliably measure the size of particulates in the size range 1-100 nm and above (according to the EU definition) is validated. Technical reports on project results are published to reach out to relevant stakeholders, such as policy makers, regulators, industries and the wider scientific community, to present and discuss our goals and results, to ensure a continuous exchange of views, needs and experiences obtained from different fields of expertise and application, and to finally integrate the resulting feedback into our ongoing work on the size-related classification of nanomaterials. KW - Nanomaterial KW - Measurement method KW - Screening methods KW - Confirmatory methods PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389827 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports SP - 1 EP - 74 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-38982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Babick, F. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Weigel, St. A1 - Wohlleben, W. T1 - Critical review manuscript with real-world performance data for counting, ensemble and separating methods including in-build mathematical conversion to number distributions submitted for publication N2 - The content of the paper is the assessment of the performance of (conventional) measurement techniques (MTs)with respect to the classification of disperse materials according to the EC recommendation for a definition of nanomaterial. This performance essentially refers to the accurate assessment of the number weighted median of (the constituent) particles. All data and conclusions are based on the analytical study conducted as real-world performance testing. It comprised different types of MTs (imaging, counting, fractionating, spectroscopic and integral) as well as different types of materials. Beside reference materials with well-defined size distribution the study also included several commercial powders (variation of particle composition, morphology, coating, size range and polydispersity). In order to ensure comparability of measurement results, the participants were guided to use uniform protocols in sample preparation, conducting measurements, data analysis and in reporting results. Corresponding documents have been made public, in order to support the reviewing process of the paper, respectively to ensure the reproducibility of data by other users under the same conditions. The scientific paper relies on a comprehensive set of revised measurement data reported in uniform templates, completely describes the experimental procedures and discusses the MTs’ performance for selected materials in detail. Even more, the study is summarised and evaluated, which leads to recommendations for the use of MTs within a tiered approach of NM characterisation. In addition, the paper critically examines the factors that may affect the outcome of such a comparison among different MTs. KW - Nanomaterial KW - Measurement techniques KW - EC definition of nanomaterial KW - Nanoparticles PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389646 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D3.3.pdf SP - D3.3, 1 EP - 72 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-38964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a revision of the EC definition of nanomaterial based on analytical possibilities; updated N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of na-nomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2017 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services sci-ence-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In an earlier report1 key aspects of the EC NM Definition were addressed, with the goal to improve the implementability of the EC NM Definition. Based on further developments and results obtained in NanoDefine project that first report was updated and is presented here. The key aspects are discussed based on the results of four years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possibilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possi-bilities, according to the state of the art in 2017. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance: 'external dimension', ‘number based particle size distribution‘, ‘polydispersity‘ and ‘upper size limit‘, the term ‘particle’, the ‘means to prove that a material is not a nanomaterial‘ and ‘the role of the volume specific sur-face area (VSSA)‘, and "particulate materials'. KW - EU definition of a nanomaterial KW - Nanoparticles KW - Revision KW - Update 2017 PY - 2017 UR - http://www.nanodefine.eu/index.php/nanodefine-publications/nanodefine-technical-reports SP - D7.10, 1 EP - D7.10, 71 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rauscher, H. A1 - Mech, A. A1 - Gaillard, C. A1 - Stintz, M. A1 - Wohlleben, W. A1 - Weigel, St. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Babick, F. A1 - Mielke, Johannes T1 - Recommendations on a Revision of the EC Definition of Nanomaterial Based on Analytical Possibilities N2 - In October 2011 the European Commission (EC) published a "Recommendation on the definition of nanomaterial" (2011/696/EU), to promote consistency in the interpretation of the term "nanomaterial" for legislative and policy purposes in the EU. The EC NM Definition includes a commitment to its review in the light of experience and of scientific and technological developments. This review is ongoing in 2015 and as a contribution to the review the Joint Research Centre of the European Commission (JRC) has already developed a series of three scientific-technical reports with the title: “Towards a review of the EC Recommendation for a definition of the term nanomaterial” which provides to the EC policy services science-based options on how the definition could be revised or supported with additional guidance. The overarching nature and wide scope of the EC NM Definition, as it does not exclude a priori any particulate material regardless the state, form and size, creates many analytical challenges in its imple-mentation for all stakeholders, including enterprises and regulators. The NanoDefine project has as core objective to support the implementation of the EC NM Definition. In this report key aspects of the EC NM Definition are addressed, with the goal to improve the implement-ability of the EC NM Definition. These aspects are presented and discussed based on the results of two years of research performed within the framework of the project. As a result this report assesses how well the requirements of the EC NM Definition can be fulfilled with currently available analytical possi-bilities. It presents recommendations and options on a revision of the EC NM Definition to improve the implementability of the definition based on currently available analytical possibilities, according to the state of the art of mid-2015. Of the technical issues considered in this report, the following seem to deserve the most attention in terms of clarification of the definition and/or provision of additional implementation guidance:  The term ‘external dimension’. A clear definition of 'External dimension' should be included in the text of the EC NM definition and more precise guidance on what is considered as an external dimension and how to properly character-ise it should be provided.  The ‘number based particle size distribution‘. The EC NM Definition uses a threshold related to the number based size distribution of particles. Yet most of the easily available techniques provide a mass-, volume- or scattered light intensity-based size distribution which needs to be converted into a number based distribution to be used for regulatory pur-poses. A specific guidance on the conditions under which these methods can be used to identify a na-nomaterial by employing appropriate quantity or metrics conversion should be provided.  The ‘polydispersity‘ and ‘upper size limit‘ Polydispersity is a challenge for the measurement of particle size distribution for the EC NM definition, specifically for materials with high polydispersity index and broad size distribution especially when the volume or mass of the fraction containing particles below 100 nm is very small. Therefore a dedicated guidance should be provided that allows applying an upper size limit in measurements and particle statistics. KW - Nanomaterial KW - EU Definition of nanomaterial KW - Nanoparticles PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-432339 UR - http://www.nanodefine.eu/publications/reports/NanoDefine_TechnicalReport_D7.10.pdf SP - 1 EP - 68 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-43233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Hodoroaba, Vasile-Dan A1 - Zimathies, Annett A1 - Bianchin, A. A1 - Lecloux, A. A1 - Roebben, G. A1 - Rauscher, H. A1 - Gibson, N. T1 - Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial N2 - The VSSA approach has the important advantage over classifying, imaging and counting techniques that it does not involve dispersion protocols. Further, the BET technique as the basis for VSSA determination it is in widespread use, generates low costs and is specified for many commercial materials. Finally, the same equipment allows for a deeper analysis by full isotherm evaluation. The present deliverable assesses all NanoDefine powders, supplemented by further real-world materials (in total 26 powders), and quantitatively compares the relationship between the median size (by Electron Microscopy – considered as benchmark for the EC nanomaterial definition) vs. the size derived from VSSA. The VSSA method mitigates the challenges of EM to assess the thickness of platelets, but worked as well on fibbers and particles of irregular shapes. A screening strategy is proposed. If applied to the further data from real-world materials as validation set, this screening does achieve a correct classification, leaving only borderline materials for tier 2 assessment. KW - Nanomaterial KW - Classification KW - Regulation KW - VSSA KW - Size measurement KW - Particle size PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-398938 SP - 1 EP - 26 PB - The NanoDefine Consortium CY - Wageningen, The Netherlands AN - OPUS4-39893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -