TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis CY - Portoroz, Slovenia DA - 03.05.2015 KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles KW - High-resolution PY - 2015 SN - 978-90-8227-691-6 U6 - https://doi.org/10.1088/1757-899X/109/1/012006 SP - NUR code:972 - Materials Science, 187-199 AN - OPUS4-33258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mielke, Johannes A1 - Babick, F. A1 - Uusimäki, T. A1 - Müller, P. A1 - Verleysen, E. A1 - Hodoroaba, Vasile-Dan T1 - Evaluation of electron microscopy techniques for the purpose of classification of nanomaterials N2 - One current and much-debated topic in the characterization of nanomaterials (NM) is the implementation of the recently introduced recommendation on a definition of a nanomaterial by the European Commission. All currently available sizing techniques able to address nanoparticles were systematically evaluated. It was demonstrated that particle sizing techniques like: analytical centrifugation, particle tracking analysis, single-particle inductively coupled plasma mass-spectrometry, differential electrical mobility analysis, dynamic light scattering, small angle X-ray scattering, ultrasonic attenuation spectrometry, but also gas Adsorption analysis based on the BET-method can be applied for a screening classification. However, the quality of the results depends on the individual material to be classified. For well-dispersed, nearly spherical (nano)particles most of the sizing techniques can be applied in a quick and reliable way. In contrast, the classification of most real-world materials is a challenging task, mainly due to non-spherical particle shape, large polydispersity or strong agglomeration/ aggregation of the particles. In the present study it was shown that these issues can be resolved in most cases by electron microscopy as a confirmatory classification technique. Electron microscopy techniques such as TEM, STEM, SEM or TSEM transmission in SEM) are capable of assessing the size of individual nanoparticles accurately (see Figures 1 and 2). Nevertheless the challenging aspect is sample preparation from powder or liquid form on the substrate, so that a homogeneous distribution of well-separated (deagglomerated) particles is attained. The systematic study in this work shows examples where the extraction of the critical, smallest particle dimension - as the decisive particle parameter for the classification as a NM - is possible by analysing the sample after its simple, dry preparation. The consequences of additional typical issues like loss of information due to Screening of smaller particles by larger ones or the (in)ability to access the constituent particles in aggregates are discussed. T2 - European Microscopy Congress emc 2016 CY - Lyon, France DA - 28.08.2016 KW - Nanomaterial classification KW - Nanoparticles KW - Electron microscopy PY - 2016 SN - 9783527808465 U6 - https://doi.org/10.1002/9783527808465.EMC2016.5767 SP - 13 EP - 14 PB - Wiley-VCH AN - OPUS4-44087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -