TY - JOUR A1 - Babick, F. A1 - Mielke, Johannes A1 - Wohlleben, W. A1 - Weigel, St. A1 - Hodoroaba, Vasile-Dan T1 - How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work JF - Journal of Nanoparticle Research N2 - Currently established and projected regulatory frameworks require the classification of materials (whether nano or non-nano) as specified by respective definitions, most of which are based on the size of the constituent particles. This brings up the question if currently available techniques for particle size determination are capable of reliably classifying materials that potentially fall under these definitions. In this study, a wide variety of characterisation techniques, including counting, fractionating, and spectroscopic techniques, has been applied to the same set of materials under harmonised conditions. The selected materials comprised well-defined Quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. As a result, each technique could be evaluated with respect to the determination of the number-weighted median size. Recommendations on the most appropriate and efficient use of techniques for different types of material are given. KW - Nanomaterial classification KW - Nanoparticle KW - Number-weighted median size KW - Tiered KW - Particle size analysis KW - Nanometrology KW - Characterisation techniques PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-367922 UR - http://link.springer.com/article/10.1007/s11051-016-3461-7 DO - https://doi.org/10.1007/s11051-016-3461-7 SN - 1388-0764 SN - 1572-896X VL - 18 IS - 6 SP - Article 158, 1 EP - 40 PB - Springer AN - OPUS4-36792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böckmann, H. A1 - Liu, S. A1 - Mielke, Johannes A1 - Gawinkowski, S. A1 - Walluk, J. A1 - Grill, L. A1 - Wolf, M. A1 - Kumagai, T. T1 - Direct observation of photoinduced tautomerization in single molecules at a metal surface JF - Nano Letters N2 - Molecular switches are of fundamental importance in nature, and light is an important stimulus to selectively drive the switching process. However, the local dynamics of a conformational change in these molecules remain far from being completely understood at the single-molecule level. Here, we report the direct observation of photoinduced tautomerization in single porphycene molecules on a Cu(111) surface by using a combination of low-temperature scanning tunneling microscopy and laser excitation in the near-infrared to ultraviolet regime. It is found that the thermodynamically stable trans configuration of porphycene can be converted to the metastable cis configuration in a unidirectional fashion by photoirradiation. The wavelength dependence of the tautomerization cross section exhibits a steep increase around 2 eV and demonstrates that excitation of the Cu d-band electrons and the resulting hot carriers play a dominant role in the photochemical process. Additionally, a pronounced isotope effect in the cross section (∼100) is observed when the transferred hydrogen atoms are substituted with deuterium, indicating a significant contribution of zero-point energy in the reaction. Combined with the study of inelastic tunneling electron-induced tautomerization with the STM, we propose that tautomerization occurs via excitation of molecular vibrations after photoexcitation. Interestingly, the observed cross section of ∼10–19 cm2 in the visible–ultraviolet region is much higher than that of previously studied molecular switches on a metal surface, for example, azobenzene derivatives (10–23–10–22 cm2). Furthermore, we examined a local environmental impact on the photoinduced tautomerization by varying molecular density on the surface and find substantial changes in the cross section and quenching of the process due to the intermolecular interaction at high density. KW - STM KW - Pophycene PY - 2016 DO - https://doi.org/10.1021/acs.nanolett.5b04092 SN - 1530-6984 SN - 1530-6992 VL - 16 IS - 2 SP - 1034 EP - 1041 PB - ACS AN - OPUS4-35803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy JF - Microscopy and Microanalysis N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 DO - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode JF - IOP Conf. Series: Materials Science and Engineering N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass – thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - European Microbeam Analysis Society’s 14th European Workshop on Modern Developments and Applications in Microbeam Analysis (EMAS 2015) CY - Portorož, Slovenia DA - 03.05.2015 KW - High-resolution KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355628 UR - http://iopscience.iop.org/article/10.1088/1757-899X/109/1/012006 DO - https://doi.org/10.1088/1757-899X/109/1/012006 SN - 1757-899X VL - 109 SP - 012006-1 EP - 012006-12 PB - IOP Publishing Ltd CY - Bristol, UK AN - OPUS4-35562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Babick, F. A1 - Uusimäki, T. A1 - Müller, P. A1 - Verleysen, E. A1 - Hodoroaba, Vasile-Dan T1 - Evaluation of electron microscopy techniques for the purpose of classification of nanomaterials JF - Microscopy and Microanalysis N2 - Electron microscopy techniques such as TEM, STEM, SEM or TSEM (transmission in SEM) are capable of assessing the size of individual nanoparticles accurately. Nevertheless, the challenging aspect is sample preparation from powder or liquid form on the substrate, so that a homogeneous distribution of well-separated (deagglomerated) particles is attained. The systematic study in this work shows examples where the extraction of the critical, smallest particle dimension - as the decisive particle parameter for the classification as a NM - is possible by analysing the sample after ist simple, dry preparation. The consequences of additional typical issues like loss of information due to screening of smaller particles by larger ones or the (in)ability to access the constituent particles in aggregates are discussed. KW - Nanomaterial KW - Electron microscopy KW - Particle size distribution KW - Classification PY - 2016 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/evaluation-of-electron-microscopy-techniques-for-the-purpose-of-classification-of-nanomaterials/0B66A25EA7F7A5A3622C02A359C8304F DO - https://doi.org/10.1017/S1431927616005523 SN - 1431-9276 SN - 1435-8115 VL - 22 IS - Suppl. 3 SP - 936 EP - 937 PB - Cambridge AN - OPUS4-38445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Lopez, S. A1 - Hodoroaba, Vasile-Dan T1 - Electrospray deposition of nanoparticles on TEM grids JF - Microscopy and Microanalysis N2 - The authors have tested the prototype of an electrospray deposition system developed by the company RAMEM under its trademark IONER. To test the prototype and assess its performance, several materials have been sprayed onto TEM grids and the resulting particle distributions were compared to more traditional sample preparation strategies like the “drop on grid” method. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimized. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles, which are much better suited to an automatic image evaluation procedure than the agglomerated particles observed otherwise. The applicability of the technique to a broad range of materials is demonstrated by various examples, but also the influence of the substrate, the choice of the particular TEM grid, on the obtained spatial particle distribution is assessed. KW - Electrspray deposition KW - Electron microscopy KW - Nanoparticles KW - Sample preparation PY - 2016 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electrospray-deposition-of-nanoparticles-on-tem-grids/459E634B7F74D474A19E15E69DA82E5D DO - https://doi.org/10.1017/S1431927616010072 SN - 1431-9276 SN - 1435-8115 VL - 22 IS - Suppl 3 SP - 1846 EP - 1847 PB - Cambridge AN - OPUS4-38436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - Lopez, S. A1 - Hodoroaba, Vasile-Dan T1 - Electrospray as a sample preparation tool for electron microscopic investigations: Toward quantitative evaluation of nanoparticles JF - Microscopy and Microanalysis N2 - The potential of electrospray deposition, for the controlled preparation of particles for imaging in electron microscopes, is evaluated on various materials: from mono-modal suspensions of spherical particles to multimodal suspensions and to real-world industrial materials. It is shown that agglomeration is reduced substantially on the sample carrier, compared with conventional sample preparation techniques. For the first time, it is possible to assess the number concentration of a tri-modal polystyrene suspension by electron microscopy, due to the high deposition efficiency of the electrospray. We discovered that some suspension stabilizing surfactants form artifact particles during electrospraying. These can be avoided by optimizing the sprayed suspension. KW - Electrospray deposition KW - Nanoparticles KW - SEM KW - TEM KW - Sample preparation PY - 2017 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electrospray-as-a-sample-preparation-tool-for-electron-microscopic-investigations-toward-quantitative-evaluation-of-nanoparticles/483B212FF290B7EC001A212A19E4E72A DO - https://doi.org/10.1017/S1431927617010145 SN - 1435-8115 SN - 1431-9276 VL - 23 IS - S1 (July) SP - 1896 EP - 1897 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-42453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. A1 - Hodoroaba, Vasile-Dan T1 - Evaluation of electrospray as a sample preparation tool for electron microscopic investigations: Toward quantitative evaluation of nanoparticles JF - Microscopy and Microanalysis N2 - The potential of electrospray deposition, for the controlled preparation of particles for imaging in electron microscopes, is evaluated on various materials: from mono-modal suspensions of spherical particles to multimodal suspensions and to real-world industrial materials. It is shown that agglomeration is reduced substantially on the sample carrier, compared with conventional sample preparation techniques. For the first time, it is possible to assess the number concentration of a tri-modal polystyrene suspension by electron microscopy, due to the high Deposition efficiency of the electrospray. We discovered that some suspension stabilizing surfactants form artifact particles during electrospraying. These can be avoided by optimizing the sprayed suspension. KW - Electrospary KW - Nanoparticles KW - Sample preparation KW - TEM grid KW - SEM PY - 2017 DO - https://doi.org/10.1017/S1431927616012587 SN - 1431-9276 SN - 1435-8115 VL - 23 IS - 1 SP - 163 EP - 172 PB - Cambridge University Press AN - OPUS4-39244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Hanke, F. A1 - Peters, M.V. A1 - Hecht, S. A1 - Persson, M. A1 - Grill, L. T1 - Adatoms underneath single porphyrin molecules on Au(111) JF - Journal of the American chemical society N2 - The adsorption of porphyrin derivatives on a Au(111) surface was studied by scanning tunneling microscopy and spectroscopy at low temperatures in combination with density functional theory calculations. Different molecular appearances were found and could be assigned to the presence of single gold adatoms bonded by a coordination bond underneath the molecular monolayer, causing a characteristic change of the electronic structure of the molecules. Moreover, this interpretation could be confirmed by manipulation experiments of individual molecules on and off a single gold atom. This study provides a detailed understanding of the role of metal adatoms in surface–molecule bonding and anchoring and of the appearance of single molecules, and it should prove relevant for the imaging of related molecule–metal systems. PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-324144 UR - http://pubs.acs.org/doi/pdf/10.1021/ja510528x DO - https://doi.org/10.1021/ja510528x SN - 0002-7863 SN - 1520-5126 VL - 137 IS - 5 SP - 1844 EP - 1849 PB - American Chemical Society CY - Washington, DC AN - OPUS4-32414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Martınez-Blanco, J. A1 - Peters, M. V. A1 - Hecht, S. A1 - Grill, L. T1 - Observing single-atom diffusion at a molecule-metal interface JF - Physical Review B N2 - The dynamics at the interface between a close-packed porphyrin monolayer and Au(111) is investigated by time-dependent scanning tunneling microscopy, detecting the motion of single-interface adatoms in real space. Imaging sequences reveal predominant switching of the molecular appearance in adjacent molecules, pointing to a spatial correlation that is consistent with adatom diffusion from one molecule to the next. In some cases, the number of switching molecules is drastically increased, indicating collective switching events. In addition to the thermally induced motion of adatoms at the interface, also voltage pulses from the microscope tip can induce the process—revealing different yields in agreement with the model of adatom hopping. KW - STM KW - molecular switch KW - single molecule KW - switching dynamics KW - porphyrin KW - Au(111) PY - 2016 UR - http://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.035416 DO - https://doi.org/10.1103/PhysRevB.94.035416 VL - 94 IS - 3 SP - 035416-1 EP - 035416-7 PB - American Physical Society AN - OPUS4-37177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -