TY - CONF A1 - Klinge, A. A1 - Roswag-Klinge, E. A1 - Ziegert, C. A1 - Fontana, Patrick A1 - Richter, Matthias A1 - Hoppe, Johannes ED - Habert, G. ED - Schlueter, A. T1 - Naturally ventilated earth timber constructions N2 - Earth, timber, fibre boards and insulation materials based on wooden and other natural fibres offer a variety of properties beneficial for eco innovative constructions that are able to improve the energy and resource efficiency of buildings. Due to their porosity, natural building materials are vapour active and are able to buffer moisture. In combination with highly insulated and airtight but vapour permeable building envelopes, modern earth-timber constructions provide stable indoor humidity levels and can therefore be naturally ventilated while achieving highest energy efficiency standards. Experimental evidence suggests that monitored pilot buildings in Berlin do show healthy indoor air humidity levels (around 50%) in wintertime, while mechanically ventilated buildings demonstrate significantly lower values (around 25%), which have to be considered as uncomfortable and unhealthy. The application of building materials being poor in chemical emissions, particularly volatile organic compounds (VOC) and radon, improves the indoor air quality further, so that intermittent ventilation twice a day will be sufficient to provide healthy indoor air quality. The air quality in critical rooms (e.g. small bedrooms), demonstrating a smaller air volume, should be monitored if appropriate ratios of room size to occupancy level cannot be realised. Through night time ventilation in summer, vapour active earth-timber constructions provide evaporative cooling (humidity adsorption at night time and desorption during the day). As a result, indoor temperatures of earth-timber buildings range around 8 °C below the outside temperature peak, when an appropriate glazing ratio is reflected. The EU funded research project H-house is investigating various construction materials regarding water vapour adsorption as well as emission and absorption of harmful substances. Based on this investigation new wall constructions are designed to provide a healthier indoor environment. T2 - Sustainable Built Environment (SBE) Regional Conference - Expanding Boundaries: Systems Thinking for the Built Environment CY - Zurich, Switzerland DA - 15.06.2016 KW - Building materials KW - Climate control through building elements KW - Hygroscopic earthen and wooden materials KW - Natural ventilation KW - Airtight building KW - Low emissions PY - 2016 SN - 978-3-7281-3774-6 U6 - https://doi.org/10.3218/3774-6 SP - 674 EP - 681 PB - vdf Hochschulverlag und der ETH Zürich CY - Zürich AN - OPUS4-37201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinge, A. A1 - Roswag-Klinge, E. A1 - Fontana, Patrick A1 - Hoppe, Johannes A1 - Richter, Matthias A1 - Sjöström, C. T1 - Reduktion von Lüftungstechnik durch den Einsatz klimasteuernder Naturbaustoffe - Ergebnisse aus dem EU Forschungsvorhaben H-House und der Baupraxis T1 - Reducing the need for mechanical ventilation through the use of climate-responsive natural building materials - Results from the EU research project H-House and building practice N2 - Die größten Ressourcenverbraucher unserer Zeit sind die Gebäude oder Behausungen des Menschen sowohl in der Phase der Errichtung als auch im Betrieb. Der Gebäudesektor und damit auch die Architektur verbrauchen in Deutschland ca. 50 % der fossilen Energieressourcen und verursachen ca. 60 % des gesamten Müllaufkommens mit dem zugehörigen Bedarf an Ressourcen in der Errichtung. Öl, Stahl und Beton haben uns Glauben gemacht die natürlichen Begebenheiten bei der Gestaltung von Gebäuden wenig beachten zu müssen. Immer neue Techniken zum Betrieb und zur Klimatisierung von Gebäuden waren die Zukunft. Der Klimawandel und die Ressourcenknappheit sind Aufforderungen zur Veränderung. Das Voranschreiten der Reform des Bauwesens hat somit zentrale Bedeutung zur Erreichung der Nachhaltigkeitsziele und um unsere Gesellschaft zukunftsfähig zu machen. Klimaangepasste Architekturkonzepte und die Verwendung von klimaaktiven Naturbaustoffen werden einen wesentlichen Beitrag zum Ressourcenschutz erbringen. N2 - More resources are consumed for the construction and use of buildings and dwellings than in any other industry. The building sector, and by extension architecture, is responsible for consuming around 50 % of fossil fuels in Germany and produces around 60 % of the entire volume of waste together with the resources used for the construction of buildings. Oil, steel and concrete has led us to believe that we can overcome the laws of nature in the design of our buildings, and for years we have devised ever new technologies for controlling building climate and operating our buildings. But the onset of climate change and the continuing depletion of resources signals a need for Change. To achieve our declared sustainability goals, and to better equip society for the future, it is vital that we effect reforms in the building sector. Climate-adaptive architectural concepts and the use of climateresponsive natural building materials can potentially make a major contribution to conserving resources. T2 - Lehm 2016 - 7. Internationale Fachtagung für Lehmbau - 7th International Conference on Building with Earth CY - Weimar, Germany DA - 12.11.2016 KW - Baustoffe KW - Hygroskopische Lehm- und Holzbaustoffe KW - Natürliche Belüftung KW - Luftdichte Gebäudehülle KW - Schadstoffemission von Baustoffen KW - Building materials KW - Hygroscopic earthen and wooden building materials KW - Natural ventilation KW - Air-tight building envelope KW - Emission of pollutants from building materials PY - 2016 N1 - Volltext (PDF) in deutsch und englisch - Full text (PDF) in German and English SP - 1 EP - 15 PB - Eigenverlag Dachverband Lehm e. V. CY - Weimar AN - OPUS4-38997 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinge, A. A1 - Roswag, E. A1 - Fontana, Patrick A1 - Richter, Matthias A1 - Hoppe, Johannes A1 - Sjöström, C. T1 - Hygroscopic natural materials versus mechanical ventilation N2 - Multi residential buildings, developed as highly energy-efficient and airtight are nowadays often fitted with mechanical Ventilation Systems as a way to overcome shortcomings and even defects tinked to indoor climate. The presented study investigates the potential of low-emitting. natural building materials with hygroscopic properties to contribute to a healthy and comfortable indoor environment, while reducing the need for mechanical Ventilation. A selection of natural building materials suitable for application as internal partition walls has been investigated with regards to their water vapour adsorption capacity. Special emphasis was placed on the investigation of modified earth plasters as well as wood-based materials, used as wall lining to provide increased adsorption capacities. In addition, tests on materials emissions (formaldehyde, VOCs, SVOCs and radon) as well as adsorption tests of airborne pollutants have been conducted in specially-designed fest chambers. All tests were performed at either the material or the component tevel. Overall results to date suggest that natural materials contribute to an improved indoor environment quality through an increased moisture-buffering capacity, low emissions and the potential to adsorb airborne pollutants, therefore reducing the need for mechanical Ventilation. T2 - Terra Lyon 2016 - XIIth World Congress on Earthen Architecture CY - Lyon, France DA - 11.07.2016 KW - Hygroscopic earth and wooden materials KW - Low emissions PY - 2016 SN - 979-10-96446-11-7 SP - 218 EP - 221 PB - Editions CRAterre CY - Villefontaine AN - OPUS4-44856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia A1 - Gardei, André A1 - Hoppe, Johannes A1 - Meng, Birgit ED - Littmann, K. T1 - Funktionalisierung von Fasern für zementgebundene Materialien - ausgewählte Prüfmethoden N2 - Die geringe Zugfestigkeit von zementgebundenen Materialien kann durch die Zugabe von Fasern maßgeblich verbessert werden. Ziel eines gemeinsamen Verbundprojekts mit einem Industriepartner war die Erhöhung der Leistungsfähigkeit von kurzen Polymer- und Carbonfasern durch eine Verbesserung des Verbundes zwischen Faseroberfläche und Zementsteinmatrix. Von der IONYS AG wurde dazu eine spezielle Funktionalisierung entwickelt, die über eine Hydrophilisierung der Faseroberfläche eine chemische Anbindung an die Zementsteinmatrix gewährleistet. Aufgabe der BAM war es, die Effizienz der neuen Beschichtung bezüglich der Erhöhung der Nachrissbiegezugfestigkeit und der Reduzierung der Schwindrissbildung während der Erhärtungsphase zu quantifizieren. Die Ergebnisse zeigen, dass die Funktionalisierung die Neigung zur Schwindrissbildung für die Carbonfasern und in noch stärkerem Maße für die Polymerfasern reduziert. Eine Erhöhung der Nachrissbiegezugfestigkeit konnte dagegen nur für die deutlich steiferen Carbonfasern nachgewiesen werden. T2 - 10. Kolloquium Industrieböden CY - Esslingen, Germany DA - 03.03.2020 KW - Fibres KW - Cementitious materials KW - Shrinkage KW - Strain hardening PY - 2020 SN - 978-3-8169-3505-6 SP - 173 EP - 178 PB - expert Verlag GmbH CY - Tübingen AN - OPUS4-51915 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia A1 - Bilgin, S. A1 - Hoppe, Johannes A1 - Fontana, P. A1 - Meng, Birgit ED - Middendorf, B. ED - Fehling, E. ED - Wetzel, A. T1 - Composite UHPC facade elements with self-cleaning surface: Aspects of technological manufacturing N2 - In the framework of the European collaborative project H-House, which was finished in 2017, large façade elements were developed consisting of a box shaped external shell of ultra-high-performance concrete (UHPC) with a functionalized surface and an insulation of autoclaved aerated concrete (AAC). The exposed concrete of the elements was further refined by adding self-cleaning properties to the surface through imprinting a microstructure in combination with chemical agents directly in the casting process. The paper focuses on selected technological aspects of the manufacturing process of large-scale prototypes. Presented are results of the upscaling process of functionalized surfaces from small specimen up to large UHPC composite facade elements produced for the construction of a demonstrator. T2 - 5th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials (HiPerMat 2020) CY - Kassel, Germany DA - 11.03.2020 KW - Ultra-High Performance Concrete KW - Facade Elements KW - Self-Cleaning Properties KW - Architectural Concrete PY - 2020 SN - 978-3-7376-0828-2 U6 - https://doi.org/10.17170/kobra-202002271026 IS - 32 SP - 51 EP - 52 PB - kassel university press CY - Kassel AN - OPUS4-51908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Christoph A1 - Spitzer, Stefan A1 - Hoppe, Johannes A1 - Wenzel, Norman A1 - Pirskawetz, Stephan T1 - SENSO JOINT - An innovative sensor system for a sustainable joint design of concrete pavements N2 - Inacceptable capability and durability of joint sealing systems but also inadequate traffic performance (noise emission; overrolling comfort) up to traffic safety aspects reflect the still enormous demand for data-based description of concrete pavements performance under heavy loading conditions. Especially the deformation behavior of concrete pavement slabs in the joint region in consideration of new pavement construction types and improved concrete mixtures meanwhile established but also under the steeply rising traffic loads is not sufficiently explored. To create a data basis for advanced design rules, evaluation methods and product standards - and with it to improve quality, durability and finally sustainability of pavements - an innovative 3-D sensor system SENSO JOINT adapted to german roadworking requirements and suitable for heavy-duty operating conditions was developed. The contribution introduced describes the development of an extensive technical solution based on the analysis of decisive loads, interactions and boundary conditions. Based on calibration data, results of laboratory testing and finally field-testing on different concrete pavement construction types the outcome of a multi-level evaluation process shall introduce the potential of the new sensor system. T2 - 9th International Conference on Maintenance and Rehabilitation of Pavements (Mairepav9) CY - Online meeting DA - 01.07.2020 KW - Concrete pavements KW - Sustainable joint sealing KW - Load quantification KW - Innovative measurement technology KW - Field validation KW - Performance design for joint systems PY - 2020 SN - 978-3-030-48678-5 SN - 978-3-030-48679-2 U6 - https://doi.org/10.1007/978-3-030-48679-2 SN - 2366-2557 VL - 76 SP - 191 EP - 199 PB - Springer Nature Switzerland AG CY - Switzerland AN - OPUS4-51965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia A1 - Fontana, P. A1 - Hoppe, Johannes A1 - Bilgin, S. A1 - Meng, Birgit ED - Serrat, C. ED - Casas, J. R. ED - Gibert, V. T1 - Composite Facade Elements with Self-Cleaning Surface made of Ultra-High-Performance Concrete (UHPC) N2 - In the framework of the European project H-House various concrete façade elements were developed with the aim to ensure a long service life by combining a very durable material with self-cleaning properties. The façade elements presented are made of a shell of UHPC filled with blocks of aerated autoclaved concrete as insulating material. Self-cleaning properties were realized amongst others by imprinting a microstructure into the surface during casting. The paper focuses on selected technological aspects of the manufacturing process of prototypes which had to be performed in two concreting sections. Furthermore the challenges faced when upscaling the self-cleaning properties are addressed and the strategy to assess the self-cleaning properties by measuring the contact and the roll-off angel is presented. The results show that a successfull upscalaing process requires detailed planning and that the best results can often be achieved with a moderate work effort or material use. T2 - XV International Conference on Durability of Building Materials and Components (DBMC 2020) CY - Online meeting DA - 20.10.2020 KW - Ultra-High-Performance Concrete KW - Facade Elements KW - Self-Cleaning Properties KW - Adhesive Pull-Strength KW - Microstructure KW - Architectural Concrete PY - 2020 SN - 978-84-121101-8-0 SP - 1289 EP - 1297 PB - International Center for Numerical Methods in Engineering (CIMNE) CY - Spain AN - OPUS4-51967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fontana, Patrick A1 - Qvaeschning, D. A1 - Hoppe, Johannes ED - de Schutter, G. ED - de Belie, N. ED - Janssens, A. ED - van den Bossche, N. T1 - Durability of UHPC for facade elements with self-cleaning surfaces N2 - This paper presents the development of ultra-high performance concrete (UHPC) for façade elements with self-cleaning properties. For creating self-cleaning surfaces two different approaches are proposed. One approach is based on the photocatalytic activation of the external UHPC shell by incorporation of TiO2 particles. The second approach consists of the modification of the UHPC surface by micro structuring in combination with the application of hydrophobic agents to create durable super hydrophobicity. In the framework of the H-HOUSE Project funded by the European Commission the experimental investigations were performed with UHPC based on Dyckerhoff Nanodur® technology. The special properties of this material enable the precise reproduction of any micro structure without flaws. The current results obtained from laboratory and outdoor weathering tests are promising and demonstrate the feasibility of the approaches. T2 - XIV DBMC - 14th International Conference on Durability of Building Materials and Components CY - Ghent, Belgium DA - 29.05.2017 KW - Building materials KW - Ultra-high performance concrete KW - Water repellence KW - Photocatalysis KW - Waethering KW - Durability PY - 2017 SN - 978-2-35158-159-9 VL - PRO 107 SP - 209 EP - 210 PB - RILEM Publications S.A.R.L. AN - OPUS4-40997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, L. A1 - Fontana, P. A1 - Qvaesching, D. A1 - Kreft, O. A1 - Hoppe, Johannes A1 - Meng, Birgit T1 - UHPC-AAC facade elements: Structural design, production technology and mechanical behavior N2 - The aim of this study was to develop a lightweight composite facade element for new buildings and for the refurbishment of existing facades. These composite elements have been developed combining an insulation layer of autoclaved aerated concrete (AAC) with an external ultrahighperformance concrete (UHPC) supporting layer. This solution allows avoiding the use of connectors and facilitates the production procedure. The structural behavior of the facade elements is mainly influenced by the presence of the upturning edges that are able to increase the stiffness of the element and reduce the thickness of the external layer. The insulation material has no influence on the structural behavior of the UHPC boxes. Flexural tests were carried out to investigate a potential detachment of the external layer from the upturning edge. The photogrammetric Analysis used during the flexural tests essentially confirmed that the bond between the two UHPC layers cast in two steps is reliable. The quality of the bond between the external layer and the upturning edge is a key parameter to define the bearing capacity of the element. T2 - ICAAC 6th International Conference on Autoclaved Aerated Concrete CY - Potsdam, Germany DA - 04.09.2018 KW - Autoclaved aerated concrete KW - Flexural testing KW - Photogrammetric analysis KW - Production technology KW - Ultrahigh-performance concrete PY - 2018 SN - 978-3-433-03276-3 U6 - https://doi.org/10.1002/cepa.854 VL - 2 IS - 4 SP - 483 EP - 488 PB - Wilhelm Ernst & Sohn - Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin, Germany AN - OPUS4-47588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -