TY - JOUR A1 - Schlögl, Johanna A1 - Goldammer, Ole A1 - Bader, Julia A1 - Emmerling, Franziska A1 - Riedel, Sebastian T1 - Introducing AFS ([Al(SO3F)3]x) – a thermally stable, readily available, and catalytically active solid Lewis superacid N2 - This paper introduces the thermally stable, solid Lewis superacid aluminium tris(fluorosulfate) (AFS), that is easy-to-synthesize from commercially available starting materials. Its applicability, e.g. in catalytic C–F bond activations, is shown. KW - Lewis Acid KW - C-F activation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601001 DO - https://doi.org/10.1039/D4SC01753F SN - 2041-6520 SP - 1 EP - 7 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlögl, Johanna A1 - Krappe, Alexander R. A1 - Fürstenwerth, Paul C. A1 - Brosius, Amelie L. A1 - Fasting, Carlo A1 - Hoffmann, Kurt F. A1 - Resch-Genger, Ute A1 - Eigler, Siegfried A1 - Steinhauer, Simon A1 - Riedel, Sebastian T1 - Luminescent Perhalofluoro Trityl Radicals N2 - In this proof-of-concept study, we show that polyfluorinated trityl radicals with the, to this date, highest fluorination grade can be accessed in quantitative yields in a straightforward manner starting from the perfluorinated trityl cation. The trityl skeleton is functionalized with trimethylsilyl halides to yield perhalofluoro trityl cations, which are subsequently reduced using commercial zinc powder. In this way, we prepare three perhalofluoro trityl radicals and analyze the impact of the fluorine ligands on their electro-optical properties, revealing some interesting trends. In comparison to literature-known polychlorinated trityl radicals, the new polyfluorinated derivatives exhibit substantially higher fluorescence quantum yields, longer luminescence lifetimes, and an expanded emission range that extends into the yellow spectral region. They further display enhanced photostability under light irradiation. In radical-stained polystyrene nanoparticles, an additional broad emission band in the red−NIR wavelength region is observed, which is attributed to excimer formation. Finally, the stability of the new radicals is investigated under ambient conditions, showing the slow conversion with atmospheric oxygen yielding the respective peroxides, which are characterized by single-crystal X-ray diffraction. All in all, our study extends the present scope of luminescent trityl radicals, as the functionalization of the perfluorinated cationic precursor unlocks the path toward a vast variety of polyfluorinated trityl radicals. KW - Dye KW - Fluorescence KW - Radical KW - Synthesis KW - Mechanism KW - Signal enhancement KW - Nano KW - Particle KW - Characterization KW - Quantum yield KW - Photophysics KW - Lifetime KW - Polarity KW - Polymer KW - Solvatchromism KW - Excimer PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647973 DO - https://doi.org/10.1021/jacs.5c16418 SN - 0002-7863 VL - 147 IS - 46 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-64797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -