TY - JOUR
A1 - Schlögl, Johanna
A1 - Goldammer, Ole
A1 - Bader, Julia
A1 - Emmerling, Franziska
A1 - Riedel, Sebastian
T1 - Introducing AFS ([Al(SO3F)3]x) – a thermally stable, readily available, and catalytically active solid Lewis superacid
N2 - This paper introduces the thermally stable, solid Lewis superacid aluminium tris(fluorosulfate) (AFS), that is easy-to-synthesize from commercially available starting materials. Its applicability, e.g. in catalytic C–F bond activations, is shown.
KW - Lewis Acid
KW - C-F activation
PY - 2024
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601001
DO - https://doi.org/10.1039/D4SC01753F
SN - 2041-6520
SP - 1
EP - 7
PB - Royal Society of Chemistry (RSC)
AN - OPUS4-60100
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -
TY - JOUR
A1 - Schlögl, Johanna
A1 - Krappe, Alexander R.
A1 - Fürstenwerth, Paul C.
A1 - Brosius, Amelie L.
A1 - Fasting, Carlo
A1 - Hoffmann, Kurt F.
A1 - Resch-Genger, Ute
A1 - Eigler, Siegfried
A1 - Steinhauer, Simon
A1 - Riedel, Sebastian
T1 - Luminescent Perhalofluoro Trityl Radicals
N2 - In this proof-of-concept study, we show that polyfluorinated trityl radicals with the, to this date, highest fluorination grade can be accessed in quantitative yields in a straightforward manner starting from the perfluorinated trityl cation. The trityl skeleton is functionalized with trimethylsilyl halides to yield perhalofluoro trityl cations, which are subsequently reduced using commercial zinc powder. In this way, we prepare three perhalofluoro trityl radicals and analyze the impact of the fluorine ligands on their electro-optical properties, revealing some interesting trends. In comparison to literature-known polychlorinated trityl radicals, the new polyfluorinated derivatives exhibit substantially higher fluorescence quantum yields, longer luminescence lifetimes, and an expanded emission range that extends into the yellow spectral region. They further display enhanced photostability under light irradiation. In radical-stained polystyrene nanoparticles, an additional broad emission band in the red−NIR wavelength region is observed, which is attributed to excimer formation. Finally, the stability of the new radicals is investigated under ambient conditions, showing the slow conversion with atmospheric oxygen yielding the respective peroxides, which are characterized by single-crystal X-ray diffraction. All in all, our study extends the present scope of luminescent trityl radicals, as the functionalization of the perfluorinated cationic precursor unlocks the path toward a vast variety of polyfluorinated trityl radicals.
KW - Dye
KW - Fluorescence
KW - Radical
KW - Synthesis
KW - Mechanism
KW - Signal enhancement
KW - Nano
KW - Particle
KW - Characterization
KW - Quantum yield
KW - Photophysics
KW - Lifetime
KW - Polarity
KW - Polymer
KW - Solvatchromism
KW - Excimer
PY - 2025
UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647973
DO - https://doi.org/10.1021/jacs.5c16418
SN - 0002-7863
VL - 147
IS - 46
SP - 1
EP - 8
PB - American Chemical Society (ACS)
AN - OPUS4-64797
LA - eng
AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany
ER -