TY - JOUR A1 - Geilert, Sonja A1 - Vogl, Jochen A1 - Rosner, M. A1 - Eichert, T. T1 - Boron isotope variability related to boron speciation (change during uptake and transport) in bell pepper plants and SI traceable n(11B)/n(10B) ratios for plant reference materials JF - Rapid Communications in Mass Spectrometry N2 - Rationale: Boron (B) is an essential micronutrient in plants and its isotope variations are used to gain insights into plant metabolism, which is important for crop plant cultivation. B isotope variations were used to trace intra‐plant fractionation mechanisms in response to the B concentration in the irrigation water spanning the range from B depletion to toxic levels. Methods: A fully validated analytical procedure based on multi‐collector inductively coupled plasma mass spectrometry (MC‐ICP‐MS), sample decomposition and B Matrix separation was applied to study B isotope fractionation. The Validation was accomplished by establishing a complete uncertainty budget and by applying reference materials, yielding expanded measurement uncertainties of 0.8‰ for pure boric acid solutions and ≤1.5‰ for processed samples. With this validated procedure SI traceable B isotope amount ratios were determined in plant reference materials for the first time. Results: The B isotope compositions of Irrigation water and bell pepper samples suggest passive diffusion of the heavy 11B isotope into the roots during low to high B concentrations while uptake of the light 10B isotope was promoted during B depletion, probably by active processes. A systematic enrichment of the heavy 11B isotope in higher located plant parts was observed (average Δ11Bleaf‐roots = 20.3 ± 2.8‰ (1 SD)), possibly by a facilitated transport of the heavy 11B isotope to growing Meristems by B transporters. Conclusions: The B isotopes can be used to identify plant metabolism in Response to the B concentration in the irrigation water and during intra‐plant B transfer. The large B isotope fractionation within the plants demonstrates the importance of biological B cycling for the global B cycle. KW - isotope fractionation KW - boron KW - delta value KW - metabolism KW - bell pepper KW - SI traceability KW - measurement uncertainty PY - 2019 DO - https://doi.org/10.1002/rcm.8455 SN - 1097-0231 SN - 0951-4198 VL - 33 IS - 13 SP - 1137 EP - 1147 PB - John Wiley & Sons Ltd. AN - OPUS4-48213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kazlagic, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, A. A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Data of the characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study N2 - This dataset represents the electronic supplementary material (ESM) of the publication entitled "Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study", which is published in Geostandards and Geoanalytical Research under the DOI: 10.1111/GGR.12517. It consists of four files. 'ESM_Data.xlsx' contains all reported data of the participants, a description of the applied analytical procedures, basic calculations, the consensus values, and part of the uncertainty assessment. 'ESM_Figure-S1' displays a schematic on how measurements, sequences and replicates are treated for the uncertainty calculation carried out by PTB. 'ESM_Technical-protocol.pdf' is the technical protocol of the interlaboratory comparison, which has been provided to all participants together with the samples and which contains bedside others the definition of the measurand and guidelines for data assessment and calculations. 'ESM_Reporting-template.xlsx' is the Excel template which has been submitted to all participants for reporting their results within the interlaboratory comparison. Excel files with names of the the structure 'GeoReM_Material_Sr8786_Date.xlsx' represent the Rcon(87Sr/86Sr) data for a specific reference material downloaded from GeoReM at the specified date, e.g. 'GeoReM_IAPSO_Sr8786_20221115.xlsx' contains all Rcon(87Sr/86Sr) data for the IAPSO seawater standard listed in GeoReM until 15 November 2022. KW - Reference data KW - Strontium isotope ratio KW - Interlaboratory comparison KW - Reference material KW - Cement KW - Geological material KW - Value assignment KW - Measurement uncertainty KW - Conventional method PY - 2023 UR - https://doi.org/10.5281/zenodo.7804445 DO - https://doi.org/10.5281/zenodo.7804444 PB - Zenodo CY - Geneva AN - OPUS4-57809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kazlagic, Anera A1 - Rosner, M. A1 - Vogl, Jochen A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, J. E. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. A1 - Prohaska, T. A1 - Retzmann, A. A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. T1 - Investigating the differences between MC-ICP-MS and MC-TIMS using conventional 87Sr/86Sr isotope ratios in limestone and slate reference materials N2 - The Federal Institute for Materials Research and Testing (BAM) organised an interlaboratory comparison (ILC) for the characterisation of 87Sr/86Sr isotope ratios in limestone (IAG/CGL ML-3) and Penrhyn slate (IAG OU-6) reference materials by applying the conventional method for 87Sr/86Sr isotope ratios. Samples were sent to thirteen analytical laboratories . Since both samples are powdered, rock materials, dissolution of the sample and Sr isolation via ion exchange chromatography were mandatory. This was done using acid, microwave/acid, bomb/acid digestion or borate fusion and subsequent isolation of Sr by means of commercially available ion exchange resins. In this study, we present and discuss the potential effects that differences between laboratories, and between two instrumental measurement techniques (i.e., MC-ICP-MS and MC-TIMS), may have upon the dispersion of measurement results of the 87Sr/86Sr isotope ratio in the two aforementioned reference materials. We used a statistical mixed effects model to assess the potential effects of both the laboratory and the measurement technique. Consensus values for both materials and associated standard uncertainties {(IAG/CGL ML-3 (0.708245±0.000004) mol/mol; IAG OU-6 (0.729769±0.000008) mol/mol} were estimated by fitting a linear, Gaussian mixed effects model (Pinheiro and Bates 2000) using the R function “lmer” defined in package “lme4”. The statistical results showed that there is no significant effect attributable to differences between instrumental techniques when both materials are considered together, or separately. The p-value of the test of significance of the measurement technique effect is greater than 0.54. For both materials there were statistically significant effects attributable to differences between laboratories when the measurement results for both materials were considered together and separately. This effect is less than 0.00004 in absolute value. However, for neither material did consideration or disregard for such differences induce significant changes in the estimate of the consensus value for the 87Sr/86Sr isotope ratio. Therefore, the effects attributable to differences between instrumental techniques or between laboratories can safely be disregarded when computing the best estimate for the true value of 87Sr/86Sr isotope ratio in these materials, by the community of expert laboratories represented in this study. T2 - GeoAnalysis 2022 CY - Freiberg, Germany DA - 06.08.2022 KW - Isotope ratio KW - Conventional isotope ratio KW - ILC KW - Traceability KW - Uncertainty KW - Isotope reference materials PY - 2022 AN - OPUS4-56848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, Anika A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study JF - Geostandards and Geoanalytical Research N2 - An interlaboratory comparison (ILC)was organised to characterise 87Sr/86Sr isotope ratios in geological and industrial reference materials by applying the so-called conventional method for determining 87Sr/86Sr isotope ratios. Four cements (VDZ 100a,VDZ 200a, VDZ 300a, IAG OPC-1), one limestone (IAG CGL ML-3) and one slate (IAG OU-6) reference materials were selected, covering a wide range of naturally occurring Sr isotopic signatures. Thirteen laboratories received aliquots of these six reference materials together with a detailed technical protocol. The consensus values for the six reference materials and their associated measurement uncertainties were obtained by applying a Gaussian, linear mixed effects model fitted to all the measurement results. By combining the consensus values and their uncertainties with an uncertainty contribution for potential heterogeneity, reference values ranging from 0.708134 mol mol-1 to 0.729778 mol mol-1 were obtained with relative expanded uncertainties of ≤ 0.007 %. This study represents an ILC on conventional 87Sr/86Sr isotope ratios, within which metrological principles were considered and the compatibility of measurement results obtained by MC-ICP-MS and by MC-TIMS is demonstrated. The materials characterised in this study can be used as reference materials for validation and quality control purposes and to estimate measurement uncertainties in conventional 87Sr/86Sr isotope ratio measurement. KW - Sr isotope analysis KW - Isotope ratios KW - Cement KW - Geological material KW - MC-TIMS KW - MC-ICP-MS KW - Interlaboratory comparison KW - Measurement uncertainty KW - Cconventional method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579836 DO - https://doi.org/10.1111/ggr.12517 SN - 1639-4488 VL - 47 IS - 4 SP - 821 EP - 840 PB - Wiley online library AN - OPUS4-57983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Retzmann, Anika A1 - Faßbender, Sebastian A1 - Rosner, M. A1 - von der Au, Marcus A1 - Vogl, Jochen T1 - Performance of second generation ICP-TOFMS for (multi-)isotope ratio analysis: a case study on B, Sr and Pb and their isotope fractionation behavior during the measurements JF - Journal of Analytical Atomic Spectrometry N2 - The performance of second generation ICP-TOFMS, equipped with a micro-channel plate (MCP) enabling multi-isotope detection, in terms of isotope ratio precision and instrumental isotopic fractionation (IIF) for (multi-)isotope ratio analysis was thoroughly assessed for B, Sr and Pb. Experimental isotope ratio precision of 0.14 % for 11B/10B intensity ratio, 0.15 % for 87Sr/86Sr intensity ratio and 0.07% for 208Pb/206Pb intensity ratio were obtained at high signal levels ($500 mg L−1) which is comparable to first generation ICP-TOFMS. The long-term stability of isotope ratios, measured over several hours and expressed as repeatability, is between 0.05 % and 1.8 % for B, Sr and Pb. The observed IIF per mass unit is negative for B (i.e., −11 % for 11B/10B) which is in accordance with measurements using sector field (MC) ICP-MS. But the observed IIF per mass unit is positive for Sr (i.e., 2 % for 87Sr/86Sr) and Pb (i.e., 4.5 % for 208Pb/206Pb) which is not in accordance with measurements using sector field (MC) ICP-MS. Furthermore, different IIFs per mass unit were observed for different isotope pairs of the same isotopic system (i.e., Sr, Pb) and adjacent isotopic systems (i.e., Pb vs. Tl). This and the observations from three-isotope plots for Sr and Pb show that ion formation, ion extraction, ion transmission, ion separation and ion detection in second generation ICP-TOFMS is subject to IIF that does not follow the known mass dependent fractionation laws and is possibly caused by mass independent fractionation and/or multiple (contradictory) fractionation processes with varying contributions. The non-mass dependent IIF behavior observed for second generation ICP TOFMS has profound consequences for the IIF correction of isotope raw data, including application of multi-isotope dilution mass spectrometry (IDMS) using ICP-TOFMS. Hence, only IIF correction models that correct also for mass independent fractionation are applicable to calculate reliable isotope ratios using second generation ICP-TOFMS. In the present study, reliable d11B values, and absolute B, Sr and Pb isotope ratios could be determined using the SSB approach in single-element solutions as well as in a mixture of B, Sr and Pb, where the isotopes were measured simultaneously. KW - ICP-TOFMS KW - Isotope delta value KW - Isotope amount ratio KW - Conventional isotope ratio KW - Instrumental isotope fractionation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582239 DO - https://doi.org/10.1039/d3ja00084b SN - 0267-9477 VL - 38 IS - 10 SP - 2144 EP - 2158 PB - Royal Society of Chemistry AN - OPUS4-58223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Rosner, M. A1 - Henehan, M. J. A1 - Tütken, T. T1 - Triple Isotope Fractionation Exponents of Elements Measured by MC-ICP-MS - An Example of Mg JF - Analytical Chemistry N2 - In most chemical reactions, stable isotopes are fractionated in a mass-dependent manner, yielding correlated isotope ratios in elements with three or more stable isotopes. The proportionality between isotope ratios is set by the triple isotope fractionation exponent θ that can be determined precisely for, e.g., sulfur and oxygen by IRMS, but not for metal(loid) elements due to the lower precision of MC-ICP-MS analysis and smaller isotopic variations. Here, using Mg as a test case, we compute a complete metrologically robust uncertainty budget for apparent θ values and, with reference to this, present a new measurement Approach that reduces uncertainty on θ values by 30%. This approach, namely, direct educt-product bracketing (sample−sample bracketing), allows apparent θ values of metal(loid) isotopes to be determined precisely enough to distinguish slopes in three-isotope space. For the example of Mg, we assess appropriate quality Control standards for interference-to-signal ratios and Report apparent θ values of carbonate−seawater pairs. We determined apparent θ values for marine biogenic carbonates, where the foraminifera Globorotalia menardii yields 0.514 ± 0.005 (2 SD), the coral Porites, 0.515 ± 0.006 (2 SD), and two specimens of the giant clam Tridacna gigas, 0.508 ± 0.007 (2 SD) and 0.509 ± 0.006 (2 SD), documenting differences in the uptake pathway of Mg among marine calcifiers. The capability to measure apparent θ values more precisely adds a new dimension to metal(loid) δ values, with the potential to allow us to resolve different modes of fractionation in industrial and natural processes. KW - Isotope fractionation KW - Delta value KW - Biogenic carbonates KW - Calcification KW - Magnesium isotope ratios KW - Measurement uncertainty KW - Sample-sample bracketing PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b02699 VL - 91 IS - 22 SP - 14314 EP - 14322 PB - ACS Publications AN - OPUS4-49818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, M. A1 - Curbera, J. A1 - Peltz, U. A1 - Peplinski, Burkhard T1 - Lead isotope analysis in magic artefacts from the Berlin museums JF - Archaeological and Anthropological Sciences N2 - A set of 59 ancient magical artefacts, mainly made of lead, was selected from the collections of the Staatliche Museen zu Berlin in order to unravel their origins. All the selected artefacts have been studied for their Pb isotope compositions, which covered the whole range of the Mediterranean ore deposits. However, the majority (≈86%) were made of lead matching the small compositional range of the Laurion ore deposits. Only eight out of the 59 artefacts were made of recycled lead or lead from other ore deposits. Additionally, all but two were approximately dated based on their inscriptions. The lead isotopic composition together with information obtained from the inscriptions, the resulting dating, the context of the find and the known history of each item allowed us to gain more detailed information about the origins of these magical artefacts. The Attic provenance of 36 curse tablets was confirmed, whereas for 11 curse tablets previously classified as non-Attic, the provenance was either confirmed and specified (six artefacts) or changed to Attic (five artefacts). Surprisingly, the majority (six out of eight) of the analysed curse tablets from the Egyptian collection showed a lead isotopic composition closely matching that of Laurion. A Laurion-like lead isotopic composition was also observed for three of the four analysed oracular tablets from Dodona. Together with the dating information, this points to Laurion as the major and dominant lead source in the Aegean, at least during the fourth–third century B.C. The few curse tablets from earlier than the fourth–third century B.C. point to the use of multiple and thus isotopically more variable lead sources compared with the Roman times. KW - Lead isotopes KW - Pb isotopes KW - Greek curse tablets KW - Antikensammlung Berlin KW - Ägyptisches Museum Berlin PY - 2018 DO - https://doi.org/10.1007/s12520-016-0445-6 SN - 1866-9557 SN - 1866-9565 VL - 10 IS - 5 SP - 1111 EP - 1127 PB - Springer Verlag CY - Berlin AN - OPUS4-45628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, M. A1 - Kasemann, S. A. A1 - Kraft, R. A1 - Meixner, A. A1 - Noordmann, J. A1 - Rabb, S. A1 - Rienitz, O. A1 - Schuessler, J. A. A1 - Tatzel, Michael A1 - Vocke, R. D. T1 - Intercalibration of Mg isotope delta scales and realisation of SI traceability for Mg isotope amount ratios and isotope delta values JF - Geostandards and geoanalytical research N2 - The continuous improvement of analytical procedures using multi-collector technologies in ICP-mass spectrometry has led to an increased demand for isotope standards with improved homogeneity and reduced measurement uncertainty. For magnesium, this has led to a variety of available standards with different quality levels ranging from artefact standards to isotope reference materials certified for absolute isotope ratios. This required an intercalibration of all standards and reference materials, which we present in this interlaboratory comparison study. The materials Cambridge1, DSM3, ERMAE143, ERM-AE144, ERM-AE145, IRMM-009 and NIST SRM 980 were cross-calibrated with expanded measurement uncertainties (95% confidence level) of less than 0.030‰ for the δ25/24Mg values and less than 0.037‰ for the δ26/24Mg values. Thus, comparability of all magnesium isotope delta (δ) measurements based on these standards and reference materials is established. Further, ERM-AE143 anchors all magnesium δ-scales to absolute isotope ratios and therefore establishes SI traceability, here traceability to the SI base unit mole. This applies especially to the DSM3 scale, which is proposed to be maintained. With ERM-AE144 and ERM-AE145, which are product and educt of a sublimation-condensation process, for the first time a set of isotope reference materials is available with a published value for the apparent triple isotope fractionation exponent θapp, the fractionation relationship ln α(25/24Mg)/ln α(26/24Mg). KW - Delta scale KW - Traceability KW - Scale anchor KW - Absolute isotope ratio KW - Comparability KW - Triple isotope fractionation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511557 DO - https://doi.org/10.1111/ggr.12327 SN - 1751-908X VL - 44 IS - 3 SP - 439 EP - 457 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-51155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xiao, J. A1 - Vogl, Jochen A1 - Rosner, M. A1 - Deng, L. A1 - Jin, Z. T1 - A validated analytical procedure for boron isotope analysis in plants by MC-ICP-MS JF - Talanta N2 - Boron (B) is an essential micronutrient for plant growth. Lack of valid methods for pretreatment and measurement of δ11B in plant restrict applications of it in the biosphere. Dry ashing, one step cation exchange and micro-sublimation were combined to separate and purify boron (B) in plant tissues. The low procedure blank, high B recovery and the accurate δ11B values of the plant reference materials demonstrate that this method is suitable and valid for B pretreatment and δ11B measurement in plant samples by MC-ICP-MS. Based on this method, the δ11B in different plants (Brassica napus, Chenopodium album L, moss, lichen, and Nostoc commune) was analyzed. For Brassica napus, δ11B increased gradually from root to leaf, and then decreased to rapeseed. For the same parts, the δ11B increased from the lower parts to the higher parts. This variation may be due to the B(OH)3 transporter of NIP6;1 and the incorporation of B into the cell. The reason for lower δ11B values in shell and rapeseed compared to those in leaves presumably is to the preferred Transport of borate in the phloem. The largest δ11B fractionation between leaf and root in Brassica napus and Chenopodium album L was +24.2‰ and +26.6‰, respectively. The large variation and fractionation of δ11B within plants indicates that δ11B is a good tracer to study the B translocation mechanisms and metabolism within plants. The δ11B in Nostoc commune, lichen, and moss showed variations of -4.1‰ to +21.5‰, −9.4‰ to +7.3‰, and −18.3‰ to +11. 9‰, respectively. In the same site, δ11B in different plants ranked Nostoc commune>moss>lichen and δ11B in mosses growing in different environment ranked soil>tree>rock. Rain and soil available B are the main B sources for these plants. The δ11B in Nostoc commune, lichen, and moss may be a useful tracer to study the atmospheric B input. In the future, plants culture experiments under certain environments and studies from molecular level are necessary to decipher the variation of δ11B and fractionation mechanisms within plants. KW - Boron isotope KW - Isotopic fractionation KW - Micro-sublimation KW - Plant tissue KW - MC-ICP-MS PY - 2019 DO - https://doi.org/10.1016/j.talanta.2018.12.087 SN - 0039-9140 SN - 1873-3573 VL - 196 SP - 389 EP - 394 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-47160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xiao, J. A1 - Vogl, Jochen A1 - Rosner, M. A1 - Jin, Z. T1 - Boron isotope fractionation in soil-plant systems and its influence on biogeochemical cycling JF - Chemical Geology N2 - Boron (B) is an essential mineral nutrient for higher plants. Although B plant nutrition is well studied, the B isotope fractionation at the soil-plant interface, within plant metabolism, and its influence on biogeochemical cycling is not fully understood. Boron concentrations and isotope variations (δ11B) of the dicotyledonous plants of Chenopodium album and Brassica napus and their growing soils along a climatic gradient were analyzed to decipher these unresolved issues of the B behavior. The boron concentrations and δ11B values show an increasing trend from roots to leaves for both plants, while a decreasing trend from flower to shell and to seed for Brassica napus. A large boron isotope fractionation occurs within the plants with median Δ11Bleaf-root ≈ +20‰, which is related to different boron transporters and transportation ways. Formation of borate dimerized rhamnogalacturonan II in cell and B(OH)3 transportation in xylem lead to heavier δ11B values from root to stem and leaf while B(OH)4􀀀 transportation in phloem lead to lighter δ11B values from flower to shell and seed. Although samples cover a distinct transect with systematically different climatic conditions, Δδ11B within the individual plant compartments and between the bulk plants and the soil available B do not show any systematic variation. This suggests that B uptake from the soil into Chenopodium album and Brassica napus occurs without a distinct isotope fractionation at the soil-plant interface (median Δ11Bbulkplant-soil = 􀀀 0.2‰) and plants are able to regulate boron uptake. Both the observed large B fractionation within plant and low or absent B isotope fractionation at the soil-plant interface may have profound implications for the biological and geological B cycle. If this observed boron behavior also exists in other plants, their litters would be an important source for exporting 11B-rich biological material from continental ecosystems via rivers to the global oceans. This may be helpful for the explanation of ocean B cycle and the increasing δ11B values over the Cenozoic. KW - Boron isotopic composition KW - Boron isotope fractionation KW - Soil available boron KW - Biological boron recycling KW - Chenopodium album KW - Brassica napus PY - 2022 DO - https://doi.org/10.1016/j.chemgeo.2022.120972 SN - 0009-2541 VL - 606 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-55031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -