TY - CONF A1 - Vogl, Jochen A1 - Klingbeil, Patrick A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel T1 - Reference Measurements by Multi-Collector ICP-IDMS T2 - 10th Beijing Conference and Exhibition on Instrumental Analysis T2 - 10th Beijing Conference and Exhibition on Instrumental Analysis CY - Beijing, China DA - 2003-10-13 PY - 2003 AN - OPUS4-3799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ostermann, Markus A1 - Kettisch, P. A1 - Becker, Dorit A1 - Vogl, Jochen T1 - Measurements of sulfur in oil using pressurised wet digestion technique in open vessels and isotope dilution mass spectrometry JF - Analytical and bioanalytical chemistry KW - Wet digestion KW - Open vessel digestion KW - Sulfur in oil KW - Reference materials KW - TIMS KW - IDMS PY - 2003 UR - http://www.springerlink.com/content/b7alk8lgly2v/?p=6237db8a9c28481d87e7b017e6474b73&pi=88 SN - 1618-2642 SN - 1618-2650 VL - 377 IS - 4 SP - 779 EP - 783 PB - Springer CY - Berlin AN - OPUS4-2738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang A1 - Klingbeil, Patrick T1 - Isotope ratio measurements with Multi-Collector-ICP-MS using collision cell technology T2 - Seminar on food analysis T2 - Seminar on food analysis CY - Beijing, China DA - 2005-10-28 PY - 2005 AN - OPUS4-11652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Klingbeil, Patrick A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel T1 - Comparative studies between ID-ICP-MS and ID-TIMS T2 - Seminar on food analysis T2 - Seminar on food analysis CY - Beijing, China DA - 2005-10-28 PY - 2005 AN - OPUS4-11654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope dilution mass spectrometry - Introduction and basic principles T2 - Seminar on food analysis T2 - Seminar on food analysis CY - Beijing, China DA - 2005-10-28 PY - 2005 AN - OPUS4-11656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - Advances in isotope ratio mass spectrometry and required isotope reference materials JF - Mass spectrometry N2 - The article gives a condensed version of the keynote lecture held at the International Mass Spectrometry Conference 2012 in Kyoto. Starting with some examples for isotope research the key requirements for metrologically valid procedures enabling traceable and comparable isotope data are discussed. Of course multi-collector mass spectrometers are required which offer sufficiently high isotope ratio precision for the intended research work. Following this, corrections for mass fractionation/discrimination, validation of the analytical procedure including chemical sample preparation and complete uncertainty budgets are the most important issues for obtaining a metrologically valid procedure for isotope ratio determination. Only the application of such metrologically valid procedures enables the generation of traceable and comparable isotope data. To realize this suitable isotope and/or δ-reference materials are required, which currently are not sufficiently available for most isotope systems. Boron is given as an example, for which the situation regarding isotope and δ-reference materials is excellent. Boron may therefore serve as prototype for other isotope systems. KW - Isotope reference materials KW - Delta reference materials KW - Traceability KW - Comparability KW - Measurement uncertainty KW - Synthetic isotope mixtures KW - Mass fractionation KW - Mass discrimination PY - 2013 DO - https://doi.org/10.5702/massspectrometry.S0020 SN - 2187-137X SN - 2186-5116 VL - 2 IS - 50020 SP - 1 EP - 7 AN - OPUS4-28562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, Martin T1 - Production and certification of a unique set of isotope and delta reference materials for Boron isotope determination in geochemical, environmental and industrial materials JF - Geostandards and geoanalytical research N2 - Isotopic reference materials are essential to enable reliable and comparable isotope data. In the case of boron only a very limited number of such materials is available, thus preventing adequate quality control of measurement results and validation of analytical procedures. To address this situation a unique set of two boron isotope reference materials (ERM-AE102a and -AE104a) and three offset δ11B reference materials (ERM-AE120, -AE121 and -AE122) were produced and certified. The present article describes the production and certification procedure in detail. The isotopic composition of all the materials was adjusted by mixing boron parent solutions enriched in 10B or 11B with a boron parent solution having a natural isotopic composition under full gravimetric control. All parent solutions were analysed for their boron concentration as well as their boron isotopic composition by thermal ionisation mass spectrometry (TIMS) using isotope dilution as the calibration technique. For all five reference materials the isotopic composition obtained on the basis of the gravimetric data agreed very well with the isotopic composition obtained from different TIMS techniques. Stability and homogeneity studies that were performed showed no significant influence on the isotopic composition or on the related uncertainties. The three reference materials ERM-AE120, ERM-AE121 and ERM-AE122 are the first reference materials with natural δ11B values not equal to 0‰. The certified δ11B values are -20.2‰ for ERM-AE120, 19.9‰ for ERM-AE121 and 39.7‰ for ERM-AE122, each with an expanded uncertainty (k = 2) of 0.6‰. These materials were produced to cover about three-quarters of the known natural boron isotope variation. The 10B enriched isotope reference materials ERM-AE102a and ERM-AE104a were produced for industrial applications utilising 10B for neutron shielding purposes. The certified 10B isotope abundances are 0.29995 for ERM-AE102a and 0.31488 for ERM-AE104a with expanded uncertainties (k = 2) of 0.00027 and 0.00028, respectively. Together with the formerly certified ERM-AE101 and ERM-AE103 a unique set of four isotope reference materials and three offset δ11B reference materials for boron isotope determination are now available from European Reference Materials. KW - Boron isotope variations KW - Delta-scale KW - Stable isotopes KW - Isotope reference materials KW - Delta reference materials KW - Metrology in chemistry KW - Absolute isotope abundance PY - 2012 DO - https://doi.org/10.1111/j.1751-908X.2011.00136.x SN - 1639-4488 SN - 1751-908X VL - 36 IS - 2 SP - 161 EP - 175 PB - Blackwell CY - Oxford AN - OPUS4-26260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - Matschat, Ralf T1 - CCQM-P62: purity of nickel with respect to six defined metallic analytes - Final assessment T2 - Meeting of CCQM-Inorganic Analytical Working Group T2 - Meeting of CCQM-Inorganic Analytical Working Group CY - Beijing, China DA - 2006-10-16 PY - 2006 AN - OPUS4-13993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang ED - Vanhaecke, F. ED - Degryse, P. T1 - Reference materials in isotopic analysis T2 - Isotopic analysis - Fundamentals and applications using ICP-MS KW - ICPMS KW - IRM KW - Reference materials KW - Delta reference materials PY - 2012 SN - 978-3-527-32896-3 IS - Chapter 6 SP - 139 EP - 163 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-26102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Völling, E. A1 - Reifarth, N. A1 - Vogl, Jochen ED - Nosch, M.-L. ED - Laffineur, R. T1 - The intercultural context of treasure A in Troy - jewellery and textiles T2 - KOSMOS - Jewellery, adornment and textiles in the Aegean bronze age T2 - 13th International Aegean Conference CY - Copenhagen, Denmark DA - 2010-04-21 PY - 2012 SN - 978-90-429-2665-3 SP - 531 EP - 538 PB - Peeters Publishers CY - Liège, Belgium AN - OPUS4-26408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raab, A. A1 - Vogl, Jochen A1 - Solovyev, N. A1 - El-Khatib, Platt A1 - Costas-Rodriguez, M. A1 - Schwab, K. A1 - Griffin, E. A1 - Platt, B. A1 - Theuring, F. A1 - Vanhaecke, F. T1 - Isotope signature of iron, copper and zinc in mouse models (L66 and 5XFAD) and their controls used for dementia research N2 - Introduction: The influence of copper, iron and zinc concentrations on the formation of ß-amyloid plaques and neurofibrillary tangles in Alzheimer’s disease (AD) is widely discussed in the community. The results from human and animal studies so far are mixed with some studies showing a correlation and others not. From a number of studies, it is known that disease state and isotopic composition of essential elements can be coupled. Aim: The aim of the study was to identify changes in element content and isotopic composition in two transgenic mouse models used in AD research compared to their genetic WT relatives and to establish whether element content and isotopic signature between different laboratories is comparable. Methods: ß-amyloid (5xFAD) and tau overexpressing (L66) mice together with their matching wild-types were bred at dedicated facilities in accordance with the European Communities Council Directive (63/2010/EU). Serum and brain were sampled after sacrifice and the samples distributed among the participants of the study. The tissues were acid digested for total element determination and high-precision isotope ratio determination. Element content was determined by either sector-field or quadrupole-based inductively coupled plasma mass spectrometry (ICPMS). For the determination of isotope ratios multi-collector ICPMS was used. Results: Total copper content was significantly higher for L66 and their matched WT compared to 5xFAD and WT. Brains of L66 mice contained more Fe in brain than their WT, Zn and Cu were not significantly different between L66 and WT. Whereas 5xFAD mice had a slightly lower Cu and slightly higher Zn concentration in brain compared to WT. The isotopic signature in brain of L66 mice for Fe was different from their controls, whereas Zn isotope ratios were influenced in 5xFAD mice compared to their WT. The Cu isotopic ratio did not seem to be influenced in either strain. In serum, the shifts were less pronounced. Conclusion: Even though neither Tau-protein nor amyloid precursor protein are known to be metal-dependent / -containing proteins, the overexpression of both influences the Fe, Cu and Zn metabolism in brain and to some extent also in serum as can be seen not only using total element determination but probably more clearly studying the isotopic signature of Fe, Cu and Zn. T2 - The International Conference of Trace Elements and Minerals (ICTEM) 2022 CY - Aachen, Germany DA - 05.06.2022 KW - Isotope ratio KW - Isotope delta value KW - Metrology KW - Alzheimer disease KW - Measurement uncertainty PY - 2022 AN - OPUS4-55204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM-P213: BAM procedure for obtaining Cu delta values N2 - BAM participated in the CCQM pilot study P213 for obtaining copper isotope delta values. This presentations provides details on the MC-ICP-MS based measruement procedure, which has been applied to obtain such copper delta values. T2 - IRWG Meeting CY - Online meeting DA - 12.05.2022 KW - Isotope delta value KW - Copper KW - Metrology KW - Traceability PY - 2022 AN - OPUS4-55162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Oelze, Marcus A1 - Rosner, M. A1 - Rienitz, O. T1 - Isotope reference materials N2 - The variation of isotope ratios is increasingly used to unravel natural and technical questions. In the past, the investigation and interpretation of such variations was the field of a limited number of experts. With new upcoming techniques and research topics in the last decades, such as provenance or food authenticity studies, the number of published isotope data strongly increased. Instrumental developments such as the enhancement of inductively coupled plasma mass spectrometers (ICP-MS) from an instrument for simple quantitative analysis to highly sophisticated isotope ratio machines influenced this process significantly. While in former times only experts in mass spectrometry were able to produce reliable isotope data, nowadays many laboratories, never been in touch with mass spectrometry before, produce isotope data with an ICP-MS. Isotope reference materials (iCRM) are indispensable to enable a reliable method validation or in rare cases even SI-traceability. The fast development and the broad availability of ICP-MS also lead to an expansion of the classical research areas and new elements are under investigation. Irrespective of the investigated element or the knowledge of the user all isotope ratio applications require reference materials either for correction of instrumental isotope fractionation, for method validation or to provide a common accepted basis as needed for delta measurements. This presentation will outline the basic principles and illustrate the urgent need for new iCRMs. Consequently, the production and certification of iCRMs will be discussed and illustrated by examples of already completed certification projects. Finally, plans for future iCRMs to be produced at BAM will be presented. T2 - ICP-MS Anwender*innentreffen 2022 CY - Leoben, Austria DA - 05.09.2022 KW - Absolute isotope ratio KW - Traceability KW - Metrology KW - Comparability KW - Uncertainty KW - Isotope reference materials KW - Delta scale PY - 2022 AN - OPUS4-55681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Can, S. Z. A1 - Engin, B. A. A1 - İşleyen, A. A1 - Jotanovic, A. A1 - Acosta, O. A1 - Prina, P. A1 - Schvartz, M. A1 - Savić, M. A1 - Stojanović, M. A1 - Ahumada, D. A. A1 - Abella, J. P. A1 - Näykki, T. A1 - Saro-Aho, T. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Rienitz, O. A1 - Noordmann, J. A1 - Pape, C. A1 - Towara, J. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Ketrin, R. A1 - Mardika, E. A1 - Komalasari, I. A1 - Elishian, C. A1 - Naujalis, E. A1 - Knašienė, B. A1 - Uribe, C. A1 - Carrasco, E. A1 - Zoń, A. A1 - Warzywoda, B. A1 - Stakheev, A. A1 - Dobrovolskiy, V. A1 - Stolboushkina, T. A1 - Glinkova, A. A1 - Sobina, E. A1 - Tabatchikova, T. A1 - Gažević, L. A1 - Paunovic, M. A1 - Jaćimović, R. A1 - Zuliani, T. A1 - Zambra, R. P. A1 - Napoli, R. T1 - Determination of elements in river water JF - Metrologia N2 - The need for quality assessment of anthropogenic impact on environmental pollution is increasing due to discharge from various industries, the use of chemicals in agriculture and the consumption of fossil fuels. Diminishing resources such as natural waters used for the cultivation of agricultural products, plant and animal habitats are under severe pollution pressure and are at constant risk. Several parameters, such as Pb, Cd, Ni, Hg were listed by Water Framework Directive in Directive(2008/105/EC) in the priority substances. Cadmium and Hg were identified as priority hazardous substances whereas As is an important contaminant for its potential toxicological and carcinogenic effects. An inter-comparison study is organised in EURAMET TC-MC in order to demonstrate the capability participants for measuring five elements in river water. The participants carried out measurements for analytes: Pb, Cd, Ni and As as mandatory elements, and Se as an optional one. Participants were asked to perform the measurements with respect to the protocol provided. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Metrology KW - Traceability KW - Toxic elements KW - River water PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08001 VL - 60 IS - 1a SP - 1 EP - 40 PB - BIPM & IOP Publishing Ltd AN - OPUS4-56786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosner, Martin A1 - Pritzkow, Wolfgang A1 - Vogl, Jochen A1 - Voerkelius, S. T1 - Boron isotope compositions of crop plants: A new tracer for the origin and authenticity of food T2 - TRACE 5th Annual Meeting and Conference T2 - TRACE 5th Annual Meeting and Conference CY - Freising, Germany DA - 2009-04-01 KW - Boron isotopes in food KW - Provenance studies KW - Reference materials KW - Analytical uncertainty PY - 2009 IS - Session A / Part I SP - 1 EP - 2 AN - OPUS4-20293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - Production and certification of Pd and Pt single spikes JF - Mineralogical magazine N2 - So-called spikes are solutions of isotopically enriched elements, which are used in isotope dilution mass spectrometry (IDMS) for the accurate quantification of element concentrations. Based on its proven records, especially in reference material certification IDMS is considered as one of the most powerful and most accurate methods for determining amounts of substance. Contrary to other calibration approaches, IDMS does not directly suffer from long-time changes or drifts in instrument sensitivity. Moreover, provided isotopic exchange between the sample and spike is ensured, losses of analyte do not affect the analytical result. Both advantages are based on the fact that largely unaffected by instrumental drift, setup or by matrix, unless an isobaric interference is present. PY - 2013 UR - http://minmag.geoscienceworld.org/content/77/5/2383.full.pdf+html DO - https://doi.org/10.1180/minmag.2013.077.5.22 SN - 1471-8022 VL - 77 IS - 5 SP - 2425 PB - Mineralogical Society of Great Britain and Ireland CY - London AN - OPUS4-32243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Road-map for purity determination N2 - From several CCQM studies (CCQM-P107, CCQM-K72 and CCQM-P149) conclusions can be drawn for the purity assessment of a pure (metallic) element. These conclusions will be put together in this document in order to assist all NMIs/DIs in performing a purity assessment, whenever needed. T2 - CCQM IAWG Meeting CY - Paris, France DA - 18.04.2016 KW - Purity KW - Metrology KW - Traceability PY - 2016 AN - OPUS4-36063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. T1 - Using information from CC Tables for supporting CMC claims N2 - Core capability tables list the skills and experiences, which at least partially are needed to successfully carry out a specific analytical task within the IAWG. The required skills and experiences, so-called core capabilities (CC), are identified for each analytical procedure. The summarized CC tables are listed in the appendix of each report on the corresponding key comparison or pilot study. These CC tables enable us to demonstrate that we have the analytical procedure we claim under control by means of other Key Comparison, which do not exactly meet the claimed calibration and measurement capability. This is especially important for: a) fields where no Key Comparison is available, b) Revision of CMC claims or c) when a participation in a Key Comparison was not possible. T2 - CCQM IAWG Meeting CY - Paris, France DA - 18.04.2016 KW - metrology KW - traceability PY - 2016 AN - OPUS4-36066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - What isotopes can do... N2 - The talk gives Brief overview on the effects causing isotope variations in nature and some typical applications. It also Points to a potential application in corrosin sciences. T2 - Final Colloquium: Microbiologically influenced corrosion CY - Berlin, Germany DA - 21.05.2019 KW - Iron isotope fractionation KW - Microbially induced corrosion PY - 2019 AN - OPUS4-48273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geilert, Sonja A1 - Vogl, Jochen A1 - Rosner, M. A1 - Eichert, T. T1 - Boron isotope variability related to boron speciation (change during uptake and transport) in bell pepper plants and SI traceable n(11B)/n(10B) ratios for plant reference materials JF - Rapid Communications in Mass Spectrometry N2 - Rationale: Boron (B) is an essential micronutrient in plants and its isotope variations are used to gain insights into plant metabolism, which is important for crop plant cultivation. B isotope variations were used to trace intra‐plant fractionation mechanisms in response to the B concentration in the irrigation water spanning the range from B depletion to toxic levels. Methods: A fully validated analytical procedure based on multi‐collector inductively coupled plasma mass spectrometry (MC‐ICP‐MS), sample decomposition and B Matrix separation was applied to study B isotope fractionation. The Validation was accomplished by establishing a complete uncertainty budget and by applying reference materials, yielding expanded measurement uncertainties of 0.8‰ for pure boric acid solutions and ≤1.5‰ for processed samples. With this validated procedure SI traceable B isotope amount ratios were determined in plant reference materials for the first time. Results: The B isotope compositions of Irrigation water and bell pepper samples suggest passive diffusion of the heavy 11B isotope into the roots during low to high B concentrations while uptake of the light 10B isotope was promoted during B depletion, probably by active processes. A systematic enrichment of the heavy 11B isotope in higher located plant parts was observed (average Δ11Bleaf‐roots = 20.3 ± 2.8‰ (1 SD)), possibly by a facilitated transport of the heavy 11B isotope to growing Meristems by B transporters. Conclusions: The B isotopes can be used to identify plant metabolism in Response to the B concentration in the irrigation water and during intra‐plant B transfer. The large B isotope fractionation within the plants demonstrates the importance of biological B cycling for the global B cycle. KW - isotope fractionation KW - boron KW - delta value KW - metabolism KW - bell pepper KW - SI traceability KW - measurement uncertainty PY - 2019 DO - https://doi.org/10.1002/rcm.8455 SN - 1097-0231 SN - 0951-4198 VL - 33 IS - 13 SP - 1137 EP - 1147 PB - John Wiley & Sons Ltd. AN - OPUS4-48213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. T1 - Real-world examples of how to calculate a KCRV N2 - In this presentation the different ways are presented, which are used to calculate in practice the key comparison reference value. T2 - EURAMET TC Metrology in Chemistry Meeting CY - Geel, Belgium DA - 03.02.2016 KW - key comparison KW - CCQM KW - Degree of equivalence PY - 2016 AN - OPUS4-35573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Irrgeher, J. A1 - Vogl, Jochen A1 - Santner, J. A1 - Prohaska, T. ED - Prohaska, T. ED - Irrgeher, J. ED - Zitek, A. ED - Jakubowski, Norbert T1 - Measurement strategies T2 - Sector field mass spectrometry for elemental and isotopic analysis N2 - Designing an appropriate measurement strategy for a particular analytical question is not always obvious, since a number of factors have to be considered, whereby some of them might be difficult to define. A set of key questions generally precede the experimental design in analytical measurements and help to choose the measurement strategy, which is fit for the intended use – in the particular case of the content of this book – either for quantification, elemental ratio or isotope ratio analyses, accordingly. PY - 2015 SN - 978-1-84973-392-2 SN - 978-1-84973-540-7 SN - 2044-253X N1 - Serientitel: New developments in mass spectrometry – Series title: New developments in mass spectrometry VL - 3 SP - Chapter 8, 126 EP - 151 CY - Cambridge, UK AN - OPUS4-32555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Paz, B. A1 - Völling, E. T1 - On the ore provenance of the Trojan silver artefacts JF - Archaeological and Anthropological Sciences N2 - Lead isotopes are a well-established tool to trace the geographic origin of samples and artefacts in archaeology and geochemistry. In archaeology, lead isotopes are often applied to gain information on the provenance of the used ores especially in lead and silver artefacts. The assignment of a specific and unambiguous provenance in most cases is not possible or at least hindered due to several limitations such as ore deposits overlapping in their lead isotopic composition, a large spread within one ore deposit or a missing overlap with known mining sites. Such difficult cases can only be solved by using information from sources being independent of the isotope data. This information can be of chemical nature such as concentrations of key elements or they can be of archaeological nature such as cultural or trade route information.Within this study, we combined lead isotope data of ores and artefacts with silver mass fractions in the ore deposits, Au/Ag-ratios in ores and artefacts and finally archaeological Information on the cultural context in the Mediterranean and Anatolian Region. This approach enabled us to significantly reduce the potential number of mining regions. Finally, the potential sources could be narrowed down to the three remaining locations the Central Taurus, Arap Dağ and the Eastern Troad. Beneath these three locations, the Central Taurus shows the highest probability for the geographic origin of the galena which has been used to create the Trojan silver artefacts. KW - Trojan silver artefacts KW - Priam's treasure KW - Lead isotope composition KW - Central Taurus KW - Ore provenance KW - Elemental composition PY - 2019 DO - https://doi.org/10.1007/s12520-018-0756-x SN - 1866-9557 SN - 1866-9565 VL - 11 IS - 7 SP - 3267 EP - 3277 PB - Springer Verlag AN - OPUS4-48272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Rosner, M. A1 - Henehan, M. J. A1 - Tütken, T. T1 - Triple Isotope Fractionation Exponents of Elements Measured by MC-ICP-MS - An Example of Mg JF - Analytical Chemistry N2 - In most chemical reactions, stable isotopes are fractionated in a mass-dependent manner, yielding correlated isotope ratios in elements with three or more stable isotopes. The proportionality between isotope ratios is set by the triple isotope fractionation exponent θ that can be determined precisely for, e.g., sulfur and oxygen by IRMS, but not for metal(loid) elements due to the lower precision of MC-ICP-MS analysis and smaller isotopic variations. Here, using Mg as a test case, we compute a complete metrologically robust uncertainty budget for apparent θ values and, with reference to this, present a new measurement Approach that reduces uncertainty on θ values by 30%. This approach, namely, direct educt-product bracketing (sample−sample bracketing), allows apparent θ values of metal(loid) isotopes to be determined precisely enough to distinguish slopes in three-isotope space. For the example of Mg, we assess appropriate quality Control standards for interference-to-signal ratios and Report apparent θ values of carbonate−seawater pairs. We determined apparent θ values for marine biogenic carbonates, where the foraminifera Globorotalia menardii yields 0.514 ± 0.005 (2 SD), the coral Porites, 0.515 ± 0.006 (2 SD), and two specimens of the giant clam Tridacna gigas, 0.508 ± 0.007 (2 SD) and 0.509 ± 0.006 (2 SD), documenting differences in the uptake pathway of Mg among marine calcifiers. The capability to measure apparent θ values more precisely adds a new dimension to metal(loid) δ values, with the potential to allow us to resolve different modes of fractionation in industrial and natural processes. KW - Isotope fractionation KW - Delta value KW - Biogenic carbonates KW - Calcification KW - Magnesium isotope ratios KW - Measurement uncertainty KW - Sample-sample bracketing PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b02699 VL - 91 IS - 22 SP - 14314 EP - 14322 PB - ACS Publications AN - OPUS4-49818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Molloy, J. L. A1 - Winchester, M. R. A1 - Butler, T. A. A1 - Possolo, A. M. A1 - Rienitz, O. A1 - Roethke, A. A1 - Goerlitz, V. A1 - Caciano de Sena, R. A1 - Dominguez Almeida, M. A1 - Yang, L. A1 - Methven, B. A1 - Nadeau, K. A1 - Romero Arancibia, P. A1 - Bing, W. A1 - Tao, Z. A1 - Snell, J. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Kotnala, R. K. A1 - Swarupa Tripathy, S. A1 - Elishian, C. A1 - Ketrin, R. A1 - Suzuki, T. A1 - Oduor Okumu, T. A1 - Yim, Y.-H. A1 - Heo, S. W. A1 - Min, H. S. A1 - Sub Han, M. A1 - Lim, Y. A1 - Velina Lara Manzano, J. A1 - Segoviano Regalado, F. A1 - Arvizu Torres, M. A1 - Valle Moya, E. A1 - Buzoianu, M. A1 - Sobina, A. A1 - Zyskin, V. A1 - Sobina, E. A1 - Migal, P. A1 - Linsky, M. A1 - Can, S. Z. A1 - Ari, B. A1 - Goenaga Infante, H. T1 - CCQM-K143 Comparison of Copper Calibration Solutions Prepared by NMIs/DIs JF - Metrologia N2 - CCQM-K143 is a key comparison that assesses participants’ ability to prepare single element calibration solutions. Preparing calibration solutions properly is the cornerstone of establishing a traceability link to the International System of Units (SI), and therefore should be tested in order to confirm the validity of CCQM comparisons of more complex materials. CCQM-K143 consisted of participants each preparing a single copper calibration solution at 10 g/kg copper mass fraction and shipping 10 bottled aliquots of that solution to the coordinating laboratory, the National Institute of Standards and Technology (NIST). The masses and mass fraction for the prepared solutions were documented with the submitted samples. The solutions prepared by all participants were measured at NIST by high performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES). The intensity measurements for copper were not mapped onto values of mass fraction via calibration. Instead, ratios were computed between the measurements for copper and simultaneous measurements for manganese, the internal standard, and all subsequent data reductions, including the computation of the KCRV and the degrees of equivalence, were based on these ratios. Other than for two participants whose measurement results appeared to suffer from calculation or preparation errors, all unilateral degrees of equivalence showed that the measured values did not differ significantly from the KCRV. These results were confirmed by a second set of ICP-OES measurements performed by the Physikalisch-Technische Bundesanstalt (PTB). CCQM-K143 showed that participants are capable of preparing calibration solutions starting from high purity, assayed copper metal. Similar steps are involved when preparing solutions for other elements, so it seems safe to infer that similar capabilities should prevail when preparing many different, single-element solutions. KW - Metrology KW - Primary calibration solution KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/58/1A/08006 SN - 0026-1394 VL - 58 IS - 1A SP - 08006 PB - IOP Science CY - Cambridge AN - OPUS4-51983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Implementation of ISO Guide 34 into the quality management system of BAM N2 - Presentation of the BAM quality management System with focus on the ISO Guide 34 implementation. This presentation is one part of the re-evaluation of BAM carried out by the Technical Committee of EURAMET. T2 - TC-Q Meeting CY - Dublin, Ireland DA - 12.04.2017 KW - Quality system KW - Re-evaluation KW - Metrology in chemistry KW - EURAMET KW - CCQM PY - 2017 AN - OPUS4-40031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Roadmap for the purity determination of pure metallic elements N2 - High purity materials can serve as a realisation of the Système International d’Unitès (SI) unit amount of substance for the specific element. Solutions prepared from such high purity materials using gravimetric preparation and the concept of molar mass are used as calibration solutions in many fields of analytical chemistry. Calibration solutions prepared this way provide the traceability to the SI and are the metrological basis in elemental analysis. The preparation and characterization of such primary pure substances, representing the realisation of the SI unit amount of substance, is undertaken only by a small number of National Metrology Institutes (NMI) and Designated Institutes (DI). Many other NMIs and DIs, however, prepare elemental calibration solutions as calibrants for their measurement services, such as the certification of matrix Reference Materials or the provision of reference values for Proficiency Testing schemes. The elemental calibration solutions used for this purpose are not a direct service to customers, such as preparing secondary calibration solutions, but provide the source of traceability for the other services. Hence, it is necessary for the NMI or DI to obtain data on the purity of the pure metals or other materials used to prepare the solutions with measurement uncertainties meeting the needs of the above described services. This is commonly undertaken as a “fit for purpose” assessment, appropriate for the uncertainty requirement of the service provided to customers. As a consequence, total purity measurements are a long-term strategy of CCQM-IAWG. Several studies were conducted (CCQM-P107, CCQM-K72 and CCQM-P149) on the measurement of the purity of zinc. From these studies, several conclusions can be drawn for the purity assessment of a pure (metallic) element. These conclusions will be put together in this document in order to assist all NMIs/DIs in performing a purity assessment, whenever needed. T2 - CCQM IAWG Meeting CY - Paris, France DA - 24.04.2017 KW - CCQM KW - Metrology KW - Purity assessment PY - 2017 AN - OPUS4-40034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xiao, J. A1 - Vogl, Jochen A1 - Rosner, M. A1 - Deng, L. A1 - Jin, Z. T1 - A validated analytical procedure for boron isotope analysis in plants by MC-ICP-MS JF - Talanta N2 - Boron (B) is an essential micronutrient for plant growth. Lack of valid methods for pretreatment and measurement of δ11B in plant restrict applications of it in the biosphere. Dry ashing, one step cation exchange and micro-sublimation were combined to separate and purify boron (B) in plant tissues. The low procedure blank, high B recovery and the accurate δ11B values of the plant reference materials demonstrate that this method is suitable and valid for B pretreatment and δ11B measurement in plant samples by MC-ICP-MS. Based on this method, the δ11B in different plants (Brassica napus, Chenopodium album L, moss, lichen, and Nostoc commune) was analyzed. For Brassica napus, δ11B increased gradually from root to leaf, and then decreased to rapeseed. For the same parts, the δ11B increased from the lower parts to the higher parts. This variation may be due to the B(OH)3 transporter of NIP6;1 and the incorporation of B into the cell. The reason for lower δ11B values in shell and rapeseed compared to those in leaves presumably is to the preferred Transport of borate in the phloem. The largest δ11B fractionation between leaf and root in Brassica napus and Chenopodium album L was +24.2‰ and +26.6‰, respectively. The large variation and fractionation of δ11B within plants indicates that δ11B is a good tracer to study the B translocation mechanisms and metabolism within plants. The δ11B in Nostoc commune, lichen, and moss showed variations of -4.1‰ to +21.5‰, −9.4‰ to +7.3‰, and −18.3‰ to +11. 9‰, respectively. In the same site, δ11B in different plants ranked Nostoc commune>moss>lichen and δ11B in mosses growing in different environment ranked soil>tree>rock. Rain and soil available B are the main B sources for these plants. The δ11B in Nostoc commune, lichen, and moss may be a useful tracer to study the atmospheric B input. In the future, plants culture experiments under certain environments and studies from molecular level are necessary to decipher the variation of δ11B and fractionation mechanisms within plants. KW - Boron isotope KW - Isotopic fractionation KW - Micro-sublimation KW - Plant tissue KW - MC-ICP-MS PY - 2019 DO - https://doi.org/10.1016/j.talanta.2018.12.087 SN - 0039-9140 SN - 1873-3573 VL - 196 SP - 389 EP - 394 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-47160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, L. A1 - Vogl, Jochen A1 - Mann, J. A1 - Kraft, R. A1 - Vocke, R. A1 - Pramann, A. A1 - Eberhardt, J. A1 - Rienitz, O. A1 - Lee, K.-S. A1 - Lim, J. S. A1 - Sobina, E. A1 - Song, P. A1 - Wang, J. A1 - Mester, Z. A1 - Meija, J. T1 - Copper isotope delta measurements in high purity materials: CCQM-P213 pilot study JF - Metrologia N2 - Accurate and precise isotope ratio measurements of heavy elements are playing an increasinglyimportant role in modern analytical sciences and have numerous applications. Today, isotope ratio measurements are typically performed with two principal techniques: thermal ionization mass spectrometry (TIMS) and multiple collector-inductively coupled plasma mass spectrometry (MC-ICP-MS). To obtain accurate results by mass spectrometry, isotopic certified reference materials (iCRMs) are needed for mass bias correction and for the validation of the method used for analysis.Thus, it is of paramount importance to achieve measurement comparability of all data reported, and to assess measurement capability of each CRM producer/National Metrology Institute (NMI). Therefore, the international comparison (CCQM-P213) was performed to assess the analytical capabilities of NMIs for the accurate determination of copper isotope ratio delta values in high purity materials. The study was proposed by the coordinating laboratories, National Research Council Canada (NRC), National Institute of Standards and Technology (NIST), Bundesanstalt für Materialforschung und -prüfung (BAM) and Physikalisch-Technische Bundesanstalt (PTB), as an activity of the Isotope Ratio Working Group (IRWG) of the Consultative Committee for Amount of Substance - Metrology in Chemistry and Biology (CCQM). Participants included six NMIs and one designated institute (DI) from the six countries. Although no measurement method was prescribed by the coordinating laboratories, MC-ICP-MS with either standard-sample bracketing (SSB) or combined SSB with internal normalization (C-SSBIN) models for mass bias correction were recommended. Results obtained from the six NMIs and one DI were in good agreement. KW - Comparability KW - Traceability KW - Metrology KW - Isotope delta KW - Copper PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08019 VL - 60 IS - 1A SP - 1 EP - 23 PB - IOP Science AN - OPUS4-58040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, C. A1 - Hensen, C. A1 - Wallmann, K. A1 - Liebetrau, V. A1 - Tatzel, Michael A1 - Schurr, S. L. A1 - Kutterolf, S. A1 - Haffert, L. A1 - Geilert, Sonja A1 - Hübscher, C. A1 - Lebas, E. A1 - Heuser, A. A1 - Schmidt, M. A1 - Strauss, H. A1 - Vogl, Jochen A1 - Hansteen, T. T1 - Origin of High Mg and SO4 Fluids in Sediments of the Terceira Rift, Azores‐Indications for Caminite Dissolution in a Waning Hydrothermal System JF - Geochemistry, Geophysics, Geosystems N2 - During R/V Meteor cruise 141/1, pore fluids of near surface sediments were investigated to find indications for hydrothermal activity in the Terceira Rift (TR), a hyperslow spreading center in the Central North Atlantic Ocean. To date, submarine hydrothermal fluid venting in the TR has only been reported for the D. João de Castro seamount, which presently seems to be inactive. Pore fluids sampled close to a volcanic cone at 2,800‐m water depth show an anomalous composition with Mg, SO4, and total alkalinity concentrations significantly higher than seawater and a nearby reference core. The most straightforward way of interpreting these deviations is the dissolution of the hydrothermally formed mineral caminite (MgSO4 0.25 Mg (OH)2 0.2H2O). This interpretation is corroborated by a thorough investigation of fluid isotope systems (δ26Mg, δ30Si, δ34S, δ44/42Ca, and 87Sr/86Sr). Caminite is known from mineral assemblages with anhydrite and forms in hydrothermal recharge zones only under specific conditions such as high fluid temperatures and in altered oceanic crust, which are conditions generally met at the TR. We hypothesize that caminite was formed during hydrothermal activity and is now dissolving during the waning state of the hydrothermal system, so that caminite mineralization is shifted out of its stability zone. Ongoing fluid circulation through the basement is transporting the geochemical signal via slow advection toward the seafloor. KW - Isotope ratio KW - Delta value KW - Pore fluids KW - Magnesium KW - Hydrothermal fluid PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503430 DO - https://doi.org/10.1029/2019GC008525 VL - 20 IS - 12 SP - 6078 EP - 6094 PB - Wiley AN - OPUS4-50343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Wortmann, U. G. A1 - Vogl, Jochen A1 - Schmid, Thomas T1 - Beautiful Pietàs in South Tyrol (Northern Italy): local or imported works of art? JF - Heritage Science N2 - The study, dedicated to Beautiful Pietàs conserved in South Tyrol (Northern Italy), aims to establish, for the first time, a connection between Austroalpine raw materials and the high-fired gypsum mortars constituting the Gothic figure groups in question. The origin and chronology of this stylistically and qualitatively differing ensemble have been subject of art historical debate for nearly a century. The discourse is dominated by three main hypotheses: itinerary of an Austrian artist versus itinerary of the work of art created in an artist’s workshop in Austria versus itinerary of the stylistic vocabulary via graphical or three-dimensional models. The comparison of the δ34S values and the 87Sr/86Sr ratios of the gypsum mortars and Austroalpine sulphate deposits (in a compilation of own reference samples and literature data) points to the exploitation of sediments in the Salzkammergut and possibly also in the evaporite district of the Eastern Calcareous Alps, thus evidencing the import of the sculptures and not the activities of local South Tyrolean or itinerant artists. Two geochronological units are distinguishable: The Pietà in the Church St. Martin in Göflan can be assigned to Upper Permian raw material, whereas the metrologically consistent sculptures in the Church of Our Lady of the Benedictine Abbey Marienberg and in the Chapel St. Ann in Mölten correlate with deposits of the Early Triassic (or the Lower-Middle Triassic transition). The medieval gypsum mortars also differ in their mineralogical characteristics, i.e. in their geologically related minor components, as in the first case, characterised by a significant proportion of primary anhydrite, natural carbonate impurities mainly consist of calcite (partly converted to lime-lump-like aggregates), whereas in the second group dolomite (or rather its hydration products after pyrometamorphic decomposition) predominates, accompanied by celestine, quartz and potassium feldspar. The Pietà in the Cathedral Maria Himmelfahrt in Bozen turned out to be made of Breitenbrunn calcareous sandstone (Leitha Mountains, Burgenland, Austria), which is why the sample is not considered in the geochemical analysis. KW - High-fired gypsum mortar KW - Sulphur isotope KW - Strontium isotope KW - Polarised light microscopy KW - Raman microspectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545610 DO - https://doi.org/10.1186/s40494-022-00678-6 SN - 2050-7445 VL - 10 IS - 1 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-54561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagic, Anera A1 - Vogl, Jochen A1 - Gluth, Gregor A1 - Stephan, D. T1 - Provenancing of cement using elemental analyses and isotope techniques – The state-of-the-art and future perspectives JF - Journal of analytical atomic spectrometry N2 - With the aim of identifying the origin and the manufacturer of a cement, a reliable procedure that provides unambiguous results is needed. Such procedure could resolve practical issues in damage research, liability issues and forensic investigations. A substantial number of attempts for fingerprinting of building materials, including cement, has already been carried out during the last decades. Most of them were based on concentration analysis of the main elements/components. This review provides an overview of provenance studies of cement and the main approaches commonly used. Provenance studies of cement via isotope techniques are also presented and discussed as representatives of the state-of-the-art in the field. Due to the characteristic properties and the occurrence of carefully selected isotope ratios, unique fingerprints of different kinds of materials can be provided by these methods. This property has largely been explored in various scientific fields such as geo- and cosmochemistry, food forensics, archaeology, geochronology, biomedical studies, and climate change processes. However, the potential of isotope techniques in cement and concrete research for provenance studies has barely been investigated. Therefore, the review outlines a suitable approach using isotope ratios, which could lead to reliable provenancing of cementitious materials in the future. KW - Cement KW - Sr isotopes KW - Provenance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533762 DO - https://doi.org/10.1039/d1ja00144b VL - 36 IS - 10 SP - 2030 EP - 2042 PB - The Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-53376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solovyev, N. A1 - El-Khatib, Ahmed A1 - Costas-Rodrigues, M. A1 - Schwab, K. A1 - Griffin, E. A1 - Raab, A. A1 - Platt, B. A1 - Theuring, F. A1 - Vogl, Jochen A1 - Vanhaecke, F. T1 - Cu, Fe and Zn isotope ratios in murine Alzheimer's disease models suggest specific signatures of amyloidogenesis and tauopathy JF - Journal of Biological Chemistry N2 - Alzheimer’s disease (AD) is characterized by accumulation of tau and amyloid-beta in the brain, and recent evidence suggests a correlation between associated protein aggregates and trace elements, such as copper, iron and zinc. In AD, distorted brain redox homeostasis and complexation by amyloid-beta and hyperphosphorylated tau May alter the isotopic composition of essential mineral elements. Therefore, high-precision isotopic analysis may reveal changes in the homeostasis of these elements. We used inductively coupled plasma-mass spectrometry (ICP-MS)-based techniques to determine the total Cu, Fe and Zn contents in the brain, as well as their isotopic compositions in both mouse brain and serum. Results for male transgenic tau (Line 66, L66) and amyloid/presenilin (5xFAD) mice were compared to those for the corresponding age- and gendermatched wild-type control mice (WT). Our data show that L66 brains showed significantly higher Fe levels than the corresponding WT. Significantly less Cu, but more Zn was found in 5xFAD brains. We observed significantly lighter isotopic compositions of Fe (enrichment in the lighter isotopes) in the brain, and in serum of L66 mice compared to WT. For 5xFAD mice, Zn exhibited a trend towards a lighter isotopic composition in brain and a heavier isotopic composition in serum compared to WT. Neither mouse model yielded differences in the isotopic composition of Cu. Our findings indicate significant pathology-specific alterations of Fe and Zn brain homeostasis in mouse models of AD. The associated changes in isotopic composition May serve as a marker for proteinopathies Underlying AD and other types of dementia. KW - Alzheimer’s disease KW - Tau KW - Amyloid-beta KW - Copper KW - Iron KW - Zinc KW - Multi-collector inductively coupled plasma-mass spectrometry (ICP-MS) KW - Brain KW - Serum KW - Isotopic analysis KW - Total element determination PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520214 DO - https://doi.org/10.1016/j.jbc.2021.100292 VL - 296 SP - 100292 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Mieller, Björn A1 - Noordmann, J. A1 - Rienitz, O. A1 - Malinovskiy, D. T1 - Characterization of a series of absolute isotope reference materials for magnesium: ab initio calibration of the mass spectrometers, and determination of isotopic compositions and relative atomic weights JF - Journal of Analytical Atomic Spectrometry N2 - For the first time, an ab initio calibration for absolute Mg isotope ratios was carried out, without making any a priori assumptions. All quantities influencing the calibration such as the purity of the enriched isotopes or liquid and solid densities were carefully analysed and their associated uncertainties were considered. A second unique aspect was the preparation of three sets of calibration solutions, which were applied to calibrate three multicollector ICPMS instruments by quantifying the correction factors for instrumental mass discrimination. Those fully calibrated mass spectrometers were then used to determine the absolute Mg isotope ratios in three candidate European Reference Materials (ERM)-AE143, -AE144 and -AE145, with ERM-AE143 becoming the new primary isotopic reference material for absolute isotope ratio and delta measurements. The isotope amount ratios of ERM-AE143 are n(25Mg)/n(24Mg) = 0.126590(20) mol/mol and n(26Mg)/n(24Mg) = 0.139362(43) mol/mol, with the resulting isotope amount fractions of x(24Mg) = 0.789920(46) mol/mol, x(25Mg) = 0.099996(14) mol/ mol and x(26Mg) = 0.110085(28) mol/mol and an atomic weight of Ar(Mg) = 24.305017(73); all uncertainties were stated for k = 2. This isotopic composition is identical within uncertainties to those stated on the NIST SRM 980 certificate. The candidate materials ERM-AE144 and -AE145 are isotopically lighter than ERM-AE143 by 1.6 ‰ and 1.3 ‰, respectively, concerning their n(26Mg)/n(24Mg) ratio. The relative combined standard uncertainties are ≤0.1 ‰ for the isotope ratio n(25Mg)/n(24Mg) and ≤0.15 ‰ for the isotope ratio n(26Mg)/ n(24Mg). In addition to characterizing the new isotopic reference materials, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multicollector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ and 0.7 ‰. KW - isotope reference material KW - absolute measurements KW - mass spectrometry KW - atomic weight KW - magnesium PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370931 DO - https://doi.org/10.1039/C6JA00013D SN - 0267-9477 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. VL - 31 IS - 7 SP - 1440 EP - 1458 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, M. A1 - Kasemann, S. A. A1 - Kraft, R. A1 - Meixner, A. A1 - Noordmann, J. A1 - Rabb, S. A1 - Rienitz, O. A1 - Schuessler, J. A. A1 - Tatzel, Michael A1 - Vocke, R. D. T1 - Intercalibration of Mg isotope delta scales and realisation of SI traceability for Mg isotope amount ratios and isotope delta values JF - Geostandards and geoanalytical research N2 - The continuous improvement of analytical procedures using multi-collector technologies in ICP-mass spectrometry has led to an increased demand for isotope standards with improved homogeneity and reduced measurement uncertainty. For magnesium, this has led to a variety of available standards with different quality levels ranging from artefact standards to isotope reference materials certified for absolute isotope ratios. This required an intercalibration of all standards and reference materials, which we present in this interlaboratory comparison study. The materials Cambridge1, DSM3, ERMAE143, ERM-AE144, ERM-AE145, IRMM-009 and NIST SRM 980 were cross-calibrated with expanded measurement uncertainties (95% confidence level) of less than 0.030‰ for the δ25/24Mg values and less than 0.037‰ for the δ26/24Mg values. Thus, comparability of all magnesium isotope delta (δ) measurements based on these standards and reference materials is established. Further, ERM-AE143 anchors all magnesium δ-scales to absolute isotope ratios and therefore establishes SI traceability, here traceability to the SI base unit mole. This applies especially to the DSM3 scale, which is proposed to be maintained. With ERM-AE144 and ERM-AE145, which are product and educt of a sublimation-condensation process, for the first time a set of isotope reference materials is available with a published value for the apparent triple isotope fractionation exponent θapp, the fractionation relationship ln α(25/24Mg)/ln α(26/24Mg). KW - Delta scale KW - Traceability KW - Scale anchor KW - Absolute isotope ratio KW - Comparability KW - Triple isotope fractionation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511557 DO - https://doi.org/10.1111/ggr.12327 SN - 1751-908X VL - 44 IS - 3 SP - 439 EP - 457 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-51155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faßbender, Sebastian A1 - von der Au, Marcus A1 - Koenig, Maren A1 - Pelzer, J. A1 - Piechotta, Christian A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Species-specific isotope dilution analysis of monomethylmercury in sediment using GC/ICP-ToF-MS and comparison with ICP-Q-MS and ICP-SF-MS JF - Analytical and bioanalytical chemistry N2 - A recently introduced inductively coupled plasma-time-of-flight-mass spectrometer (ICP-ToF-MS) shows enhanced sensitivity compared to previous developments and superior isotope ratio precision compared to other ToF and commonly used single-collector ICP-MS instruments. Following this fact, an improvement for isotope dilution ICP-MS using the new instrumentation has been reported. This study aimed at investigating whether this improvement also meets the requirements of species-specific isotope dilution using GC/ICP-MS, where short transient signals are recorded. The results of the analysis of monomethylmercury (MMHg) of a sediment reference material show that isotope ratio precision of ICP-MS instruments equipped with quadrupole, sector-field, and time-of-flight mass analyzers is similar within a broad range of peak signal-to-noise ratio when analyzing one isotopic system. The procedural limit of quantification (LOQ) for MMHg, expressed as mass fraction of Hg being present as MMHg, w(Hg)MMHg, was similar as well for all investigated instruments and ranged between 0.003 and 0.016 μg/kg. Due to the simultaneous detection capability, the ICP-ToF-MS might, however, be more favorable when several isotopic systems are analyzed within one measurement. In a case study, the GC/ICP-ToF-MS coupling was applied for analysis of MMHg in sediments of Finow Canal, a historic German canal heavily polluted with mercury. Mass fractions between 0.180 and 41 μg/kg (w(Hg)MMHg) for MMHg, and 0.056 and 126 mg/kg (w(Hg)total) for total mercury were found in sediment samples taken from the canal upstream and downstream of a former chemical plant. KW - Methylmercury KW - Legacy pollution KW - Finow Canal KW - Isotope dilution KW - Mercury speciation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529967 DO - https://doi.org/10.1007/s00216-021-03497-z SN - 1618-2642 VL - 413 IS - 21 SP - 5279 EP - 5289 PB - Springer CY - Berlin AN - OPUS4-52996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition—Elemental Analysis in Complex Samples JF - Molecules N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. KW - Isotope dilution mass spectrometry KW - tandard addition KW - ICP-MS KW - lank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526376 DO - https://doi.org/10.3390/molecules26092649 VL - 26 IS - 9 SP - 2649 PB - MDPI CY - Basel AN - OPUS4-52637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuroiwa, T. A1 - Zhu, Y. A1 - Inagaki, K. A1 - Long, S. A1 - Christopher, S. A1 - Puelles, M. A1 - Porinsky, M. A1 - Hatamleh, N. A1 - Murby, J. A1 - Merrick, J. A1 - White, I. A1 - Saxby, D. A1 - Caciano de Sena, R. A1 - Dominguez de Almeida, M. A1 - Vogl, Jochen A1 - Phukphatthanachai, Pranee A1 - Fung, W.-H. A1 - Yau, H.-P. A1 - Okumu, T. O. A1 - Kang'iri, J. N. A1 - Tellez, J. A. S. A1 - Campos, E. Z. A1 - Galvan, E. C. A1 - Kaewkhomdee, N. A1 - Taebunpakul, S. A1 - Thiengmanee, U. A1 - Yafa, C. A1 - Tokman, N. A1 - Tunc, M. A1 - Can, S. Z. T1 - Report of the CCQM-K123: trace elements in biodiesel fuel JF - Metrologia N2 - The CCQM-K123 key comparison was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of sodium, calcium, potassium, magnesium phosphorous and sulfur in biodiesel fuel (BDF). The National Metrology Institute of Japan (NMIJ) and National Institute of Standards and Technology (NIST) acted as the coordinating laboratories. Results were submitted by 11 NMIs and DIs. The participants used different measurement methods, though most of them used inductively coupled plasma-mass spectrometry (ICP-MS), isotope dilution technique with ICP-MS and inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave acid digestion. The material was quite challenging and a number of questions were raised at the IAWG meeting. Concerning S, the variation in S results between participants, particularly those using IDMS methods was discussed at the IAWG meeting. BAM, NIST and NMIJ reviewed their experimental conditions, results and/or uncertainty calculations for IDMS. According to the additional evaluation and investigation, the variances between the revised results became smaller than the original one, the revised results were overlapping between IDMS measurements of S content at the k=2 level. It is not possible to calculate a KCRV with values being modified after submission. It was concluded that this KC does not support S measurements. Accounting for relative expanded uncertainty, comparability of measurement results for each of Na, Ca, K, Mg and P was successfully demonstrated by the participating NMIs or DIs. It is expected that sodium, calcium, potassium, magnesium and phosphorus at mass fractions greater than approximately 0.1 mg/kg, 0.1 mg/kg, 0.05 mg/kg, 0.05 mg/kg and 0.1 mg/kg respectively in biodiesel fuel and similar matrices (fuels and oils etc.) can be determined by each participant using the same technique(s) employed for this key comparison to achieve similar uncertainties mentioned in the present report. Furthermore, the results of this key comparison can be utilized along with the IAWG core capability approach. KW - Biodiesel KW - Fuel KW - Sulphur KW - Reference measurement PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-393941 UR - http://iopscience.iop.org/article/10.1088/0026-1394/54/1A/08008/meta DO - https://doi.org/10.1088/0026-1394/54/1A/08008 SN - 0026-1394 SN - 1681-7575 VL - 54 SP - Tech. Suppl. 2017, 08008, 1 EP - 47 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-39394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Vogl, Jochen A1 - Becker, Dorit A1 - Koenig, Maren A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinowskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification Report for the Isotopic Reference Materials ERM-AE142 and ERM-EB400 N2 - Lead (Pb) isotope amount ratios are commonly used in applications ranging from archaeology and forensic sciences to terrestrial and extra-terrestrial geochemistry. Despite their utility and frequency of use, only three certified isotope amount ratio reference materials are currently available for Pb: NIST SRMs 981, 982 and 983. Because SRM 981 has a natural Pb isotopic composition, it is mainly used for correcting instrumental mass discrimination or fractionation. This means that, at present, there are no other certified isotope reference materials with natural Pb isotopic composition that could be used for validating or verifying an analytical procedure involving the measurement of Pb isotope amount ratios. To fill this gap, two new reference materials, both certified for their Pb isotopic composition, have been produced together with a complete uncertainty assessment. These new reference materials offer SI traceability and an independent means of validating or verifying analytical procedures used to produce Pb isotope amount ratio measurements. ERM-EB400 is a bronze material containing a nominal Pb mass fraction of 45 mg/kg. ERM-AE142 is a high purity solution of Pb with a nominal mass fraction of 100 mg/kg. Both materials have been specifically produced to assist analysts in verifying or validating their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). Details on the certification of these isotope reference materials are provided in this report. KW - Lead isotopic composition KW - Isotope ratio KW - Reference material KW - Mass spectrometry PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392060 SP - 1 EP - 16 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Vogl, Jochen A1 - Becker, Dorit A1 - Koenig, Maren T1 - Certification report for the reference materials ERM-AE123 and ERM-AE124 - Certified for their boron isotope composition N2 - Isotope reference materials are essential to enable reliable and comparable isotope data. Besides the correction of mass fractionation or mass discrimination, isotope reference materials are indispensible for validation and quality control of analytical procedures. This report describes the production and certification of two isotope reference materials, ERM-AE123 and ERM-AE124, for boron isotope analysis. The isotopic composition of ERM-AE123 is the unaltered natural-like isotopic composition of the base material. The isotopic composition of ERM-AE124 has been adjusted by mixing two boron stock solutions enriched in 10B and 11B respectively under full gravimetric control. All stock solutions have been prepared fully under gravimetrical control. The corresponding boron isotopic composition has been analysed by TIMS. For both reference materials the isotopic composition obtained on the basis of the gravimetric data agrees very well with the isotopic composition obtained by TIMS. The certified isotope abundances for 10B are 0.19832 (21) for ERM-AE123 and 0.96006 (6) for ERM-AE124. Together with the formerly certified ERM-AE101, -AE102a, -AE103, -AE104a, -AE120, -AE121 and AE122, a unique set of nine certified reference materials (CRM) for boron isotope analysis is now available from BAM covering a range for the 10B isotope amount fraction from 0.2 to 0.96 and for the δ11B value from -20 ‰ to +40 ‰. KW - boron KW - isotope ratio KW - enriched isotope KW - ICPMS KW - TIMs PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355826 SP - 1 EP - 17 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements JF - Analytical and Bioanalytical Chemistry N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kazlagic, Anera A1 - Rosner, M. A1 - Vogl, Jochen A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, J. E. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. A1 - Prohaska, T. A1 - Retzmann, A. A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. T1 - Investigating the differences between MC-ICP-MS and MC-TIMS using conventional 87Sr/86Sr isotope ratios in limestone and slate reference materials N2 - The Federal Institute for Materials Research and Testing (BAM) organised an interlaboratory comparison (ILC) for the characterisation of 87Sr/86Sr isotope ratios in limestone (IAG/CGL ML-3) and Penrhyn slate (IAG OU-6) reference materials by applying the conventional method for 87Sr/86Sr isotope ratios. Samples were sent to thirteen analytical laboratories . Since both samples are powdered, rock materials, dissolution of the sample and Sr isolation via ion exchange chromatography were mandatory. This was done using acid, microwave/acid, bomb/acid digestion or borate fusion and subsequent isolation of Sr by means of commercially available ion exchange resins. In this study, we present and discuss the potential effects that differences between laboratories, and between two instrumental measurement techniques (i.e., MC-ICP-MS and MC-TIMS), may have upon the dispersion of measurement results of the 87Sr/86Sr isotope ratio in the two aforementioned reference materials. We used a statistical mixed effects model to assess the potential effects of both the laboratory and the measurement technique. Consensus values for both materials and associated standard uncertainties {(IAG/CGL ML-3 (0.708245±0.000004) mol/mol; IAG OU-6 (0.729769±0.000008) mol/mol} were estimated by fitting a linear, Gaussian mixed effects model (Pinheiro and Bates 2000) using the R function “lmer” defined in package “lme4”. The statistical results showed that there is no significant effect attributable to differences between instrumental techniques when both materials are considered together, or separately. The p-value of the test of significance of the measurement technique effect is greater than 0.54. For both materials there were statistically significant effects attributable to differences between laboratories when the measurement results for both materials were considered together and separately. This effect is less than 0.00004 in absolute value. However, for neither material did consideration or disregard for such differences induce significant changes in the estimate of the consensus value for the 87Sr/86Sr isotope ratio. Therefore, the effects attributable to differences between instrumental techniques or between laboratories can safely be disregarded when computing the best estimate for the true value of 87Sr/86Sr isotope ratio in these materials, by the community of expert laboratories represented in this study. T2 - GeoAnalysis 2022 CY - Freiberg, Germany DA - 06.08.2022 KW - Isotope ratio KW - Conventional isotope ratio KW - ILC KW - Traceability KW - Uncertainty KW - Isotope reference materials PY - 2022 AN - OPUS4-56848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Ecker, K. H. A1 - Wätjen, U. A1 - Berger, Achim A1 - Grötzschel, R. A1 - Persson, L. A1 - Pritzkow, W. A1 - Radtke, Martin A1 - Riebe, Gundel A1 - Riesemeier, Heinrich A1 - Vogl, Jochen T1 - Certification of antimony implanted in silicon wafer with a silicon dioxide diffusion barrier - IRMM-302 and BAM-L001 T2 - IRMM and BAM Information Reference Materials N2 - This Report describes the certification of the reference material antimony implanted in Si/SiO2 intended to be used for calibration of surface and near surface analytical methods. It describes the preparation, homogeneity measurements and the analytical work performed for the certification of both Areal density of antimony Atoms (retained dose) and the isotope amount Ratio as well as giving considerations on the stability of the material. KW - Isotope ratio KW - Areal density KW - Surface analysis PY - 2002 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355752 SP - 1 EP - 40 PB - Institute for Reference Materials and Measurements CY - Geel, Belgium AN - OPUS4-35575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prohaska, T. A1 - Irrgeher, J. A1 - Benefield, J. A1 - Böhlke, J. K. A1 - Chesson, L. A. A1 - Coplen, T. B. A1 - Ding, T. A1 - Dunn, P. J. H. A1 - Gröning, M. A1 - Holden, N. E. A1 - Meijer, H. A. J. A1 - Moossen, H. A1 - Possolo, A. A1 - Takahashi, Y. A1 - Vogl, Jochen A1 - Walczyk, T. A1 - Wang, J. A1 - Wieser, M. E. A1 - Yoneda, S. A1 - Zhu, X.-K. A1 - Meija, J. T1 - Standard atomic weights of the elements 2021 (IUPAC Technical Report) JF - Pure and Applied Chemistry N2 - Following the reviews of atomic-weight determinations and other cognate data in 2015, 2017, 2019 and 2021, the IUPAC (International Union of Pure and Applied Chemistry) Commission on Isotopic Abundances and Atomic Weights (CIAAW) reports changes of standard atomic weights. The symbol Ar(E) was selected for standard atomic weight of an element to distinguish it from the atomic weight of an element E in a specific substance P, designated Ar(E, P). The CIAAW has changed the values of the standard atomic weights of five elements based on recent determinations of terrestrial isotopic abundances: Ar (argon): from 39.948 ± 0.001 to [39.792, 39.963] Hf (hafnium): from 178.49 ± 0.02 to 178.486 ± 0.006 Ir (iridium): from 192.217 ± 0.003 to 192.217 ± 0.002 Pb (lead): from 207.2 ± 0.1 to [206.14, 207.94] Yb (ytterbium): from 173.054 ± 0.005 to 173.045 ± 0.010 The standard atomic weight of argon and lead have changed to an interval to reflect that the natural variation in isotopic composition exceeds the measurement uncertainty of Ar(Ar) and Ar(Pb) in a specific substance. The standard atomic weights and/or the uncertainties of fourteen elements have been changed based on the Atomic Mass Evaluations 2016 and 2020 accomplished under the auspices of the International Union of Pure and Applied Physics (IUPAP). Ar of Ho, Tb, Tm and Y were changed in 2017 and again updated in 2021: Al (aluminium), 2017: from 26.981 5385 ± 0.000 0007 to 26.981 5384 ± 0.000 0003 Au (gold), 2017: from 196.966 569 ± 0.000 005 to 196.966 570 ± 0.000 004 Co (cobalt), 2017: from 58.933 194 ± 0.000 004 to 58.933 194 ± 0.000 003 F (fluorine), 2021: from 18.998 403 163 ± 0.000 000 006 to 18.998 403 162 ± 0.000 000 005 (Ho (holmium), 2017: from 164.930 33 ± 0.000 02 to 164.930 328 ± 0.000 007) Ho (holmium), 2021: from 164.930 328 ± 0.000 007 to 164.930 329 ± 0.000 005 Mn (manganese), 2017: from 54.938 044 ± 0.000 003 to 54.938 043 ± 0.000 002 Nb (niobium), 2017: from 92.906 37 ± 0.000 02 to 92.906 37 ± 0.000 01 Pa (protactinium), 2017: from 231.035 88 ± 0.000 02 to 231.035 88 ± 0.000 01 Pr (praseodymium), 2017: from 140.907 66 ± 0.000 02 to 140.907 66 ± 0.000 01 Rh (rhodium), 2017: from 102.905 50 ± 0.000 02 to 102.905 49 ± 0.000 02 Sc (scandium), 2021: from 44.955 908 ± 0.000 005 to 44.955 907 ± 0.000 004 (Tb (terbium), 2017: from 158.925 35 ± 0.000 02 to 158.925 354 ± 0.000 008) Tb (terbium), 2021: from 158.925 354 ± 0.000 008 to 158.925 354 ± 0.000 007 (Tm (thulium), 2017: from 168.934 22 ± 0.000 02 to 168.934 218 ± 0.000 006) Tm (thulium), 2021: from 168.934 218 ± 0.000 006 to 168.934 219 ± 0.000 005 (Y (yttrium), 2017: from 88.905 84 ± 0.000 02 to 88.905 84 ± 0.000 01) Y (yttrium), 2021: from 88.905 84 ± 0.000 01 to 88.905 838 ± 0.000 002 KW - Argon KW - Ciaaw.org KW - Hafnium KW - Iridium KW - Lead KW - LSVEC KW - Ytterbium PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548443 DO - https://doi.org/10.1515/pac-2019-0603 SN - 0033-4545 VL - 94 IS - 5 SP - 573 EP - 600 PB - De Gruyter Verlag CY - Berlin AN - OPUS4-54844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Coplen, T. B. A1 - Holden, N. E. A1 - Ding, T. A1 - Meijer, H. A. J. A1 - Vogl, Jochen A1 - Zhu, X. T1 - The Table of Standard Atomic Weights—An exercise in consensus JF - Rapid Communications in Mass Spectrometry N2 - The present Table of Standard Atomic Weights (TSAW) of the elements is perhaps one of the most familiar data sets in science. Unlike most parameters in physical science whose values and uncertainties are evaluated using the “Guide to the Expression of Uncertainty in Measurement” (GUM), the majority of standard atomic weight values and their uncertainties are consensus values, not GUM-evaluated values. The Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) regularly evaluates the literature for new isotopic-abundance measurements that can lead to revised standard atomic-weight values, Ar(E) for element E. The Commission strives to provide utmost clarity in products it disseminates, namely the TSAW and the Table of Isotopic Compositions of the Elements (TICE). In 2016, the Commission recognized that a guideline recommending the expression of uncertainty listed in parentheses following the standard atomic-weight value, for example, Ar(Se) = 78.971(8), did not agree with the GUM, which suggests that this parenthetic notation be reserved to express standard uncertainty, not the expanded uncertainty used in the TSAW and TICE. In 2017, to eliminate this noncompliance with the GUM, a new format was adopted in which the uncertainty value is specified by the “±” symbol, for example, Ar(Se) = 78.971 ± 0.008. To clarify the definition of uncertainty, a new footnote has been added to the TSAW. This footnote emphasizes that an atomic-weight uncertainty is a consensus (decisional) uncertainty. Not only has the Commission shielded users of the TSAW and TICE from unreliable measurements that appear in the literature as a result of unduly small uncertainties, but the aim of IUPAC has been fulfilled by which any scientist, taking any natural sample from commerce or research, can expect the sample atomic weight to lie within Ar(E) ± its uncertainty almost all of the time. KW - Atomic weight KW - Standard atomic weight KW - Uncertainty PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551299 DO - https://doi.org/10.1002/rcm.8864 SN - 1097-0231 VL - 36 IS - 15 SP - 1 EP - 15 PB - Wiley AN - OPUS4-55129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rienitz, O. A1 - Pramann, A. A1 - Flierl, L. T1 - Scale Conversion and Uncertainty Calculations in Isotope Delta Measurements JF - Geostandards and Geoanalytical Research N2 - Isotope ratio applications are on the increase and a major part of which are delta measurements, because they are easier to perform than the determination of absolute isotope ratios while offering lower measurement uncertainties. Delta measurements use artefact-based scales and therefore scale conversions are required due to the lack of the scale defining standards. Such scale conversions often form the basis for comparing data being generated in numerous projects andtherefore need to be as accurate as possible. In practice, users are tempted to apply linear approximations, which are not sufficiently exact, because delta values are defined by nonlinear relationships. The bias of such approximations often is beyond typical measurement uncertainties and its extent can hardly be predicted. Therefore, exact calculations are advised. Here, the exact equations and the bias of the approximations are presented, and calculations are illustrated by real-world examples. Measurement uncertainty is indispensable in this context and therefore, its calculation is described as well for determining delta values but also for scale conversions. Approaches for obtaining a single delta measurement and for repeated measurements are presented. For the latter case, a new approach for calculating the measurement uncertainty is presented, which considers covariances between the isotope ratios. KW - Delta isotope standard KW - Delta scale KW - In-house calibration solution KW - Isotope ratios KW - Isotope reference material KW - Measurement uncertainty KW - Scale conversion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557254 DO - https://doi.org/10.1111/ggr.12450 SN - 1639-4488 VL - 46 IS - 4 SP - 773 EP - 787 PB - Wiley AN - OPUS4-55725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tukhmetova, Dariya A1 - Lisec, Jan A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Data processing made easy: standalone tool for automated calculation of isotope ratio from transient signals – IsoCor JF - Journal of Analytical Atomic Spectrometry N2 - Despite numerous advantages offered by hyphenation of chromatography and electrokinetic separation methods with multicollector (MC) ICP-MS for isotope analysis, the main limitation of such systems is the decrease in precision and increase in uncertainty due to generation of short transient signals. To minimize this limitation, most authors compare several isotope ratio calculation methods and establish a multi-step data processing routine based on the precision and accuracy of the methods. However, to the best of our knowledge, there is no universal data processing tool available that incorporates all important steps of the treatment of the transient signals. Thus, we introduce a data processing application (App) IsoCor that facilitates automatic calculation of isotope ratios from transient signals and eases selection of the most suitable method. The IsoCor App performs baseline subtraction, peak detection, mass bias correction, isotope ratio calculation and delta calculation. The feasibility and reliability of the App was proven by reproducing the results from isotope analysis of three elements (neodymium, mercury and sulfur) measured on-line via hyphenated systems. The IsoCor App provides trackability of the results to ensure quality control of the analysis. KW - Isotope ratio KW - Transient signal KW - MC-ICP-MS KW - Data processing KW - App PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559068 DO - https://doi.org/10.1039/D2JA00208F VL - 37 IS - 11 SP - 2401 EP - 2409 PB - Royal Society of Chemistry AN - OPUS4-55906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H A1 - Malinovskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. E. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification of ERM-EB400, the first matrix reference material for lead isotope amount ratios, and ERM-AE142, a lead solution providing a lead isotopic composition at the edge of natural variation JF - Geostandards and Geoanalytical Research N2 - Lead isotope amount ratios are commonly used in diverse fields such as archaeometry, geochemistry and forensic science. Currently, five reference materials with certified lead isotope amount ratios are available, namely NIST SRM 981, 982 and 983, GBW-04442 and NMIJ 3681-a. Only NIST SRM 981 and NMIJ 3681-a have approximately natural isotopic compositions, and NIST SRM 981 is predominantly used for correcting mass discrimination/mass fractionation in the applied mass spectrometric procedures. Consequently, there is no other certified reference material available to be used for validation and/or quality control of the analytical procedures applied to lead isotope amount ratio measurements. To fill this gap, two new reference materials have been produced and certified for their lead isotope amount ratios. For both certified reference materials, complete uncertainty budgets have been calculated and SI traceability has been established. This provides the users with independent means for validating and verifying their analytical procedures and for conducting quality control measures. ERM-EB400 is a bronze material with a nominal lead mass fraction of 45 mg kg-1 and certified lead isotope amount ratios of n(206Pb)/n(204Pb) = 18.072(17) mol mol-1, n(207Pb)/n(204Pb) = 15.578(18) mol mol-1 and n(208Pb)/n(204Pb) = 38.075(46) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. ERM-AE142 is a high-purity solution of lead in 2% nitric acid with a nominal mass fraction of 100 mg kg-1 and certified Pb isotope amount ratios of n(206Pb)/n(204Pb) = 21.114(17) mol mol-1, n(207Pb)/n(204Pb) = 15.944(17) mol mol-1 and n(208Pb)/n(204Pb) = 39.850(44) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. Both materials are specifically designed to fall within the natural lead isotopic variation and to assist users with the validation and verification of their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). As additional information, δ208/206PbNIST SRM981 values are provided for both materials. For ERM-AE142, a delta value of δ208/206PbNIST SRM981 = -28.21(30) ‰ was obtained, and for ERM-EB400, a delta value of δ208/206PbNIST SRM981 = -129.47(38) ‰ was obtained, with the associated expanded uncertainties (k = 2) given in brackets. KW - Lead isotope variations KW - Radiogenic isotopes KW - Isotope reference material KW - Metrology in chemistry KW - Measurement uncertainty PY - 2019 DO - https://doi.org/10.1111/ggr.12253 SN - 1751-908X SN - 1639-4488 VL - 43 IS - 1 SP - 23 EP - 37 PB - John Wiley & Sons AN - OPUS4-47383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel T1 - Development of reference procedures for the quantification of toxic metals and S in plastics JF - Journal of analytical atomic spectrometry N2 - The quantitative analysis of toxic metals in plastics is very important for different sectors of industry and daily life. Many routine procedures have been established based on X-ray fluorescence or inductively coupled plasma atomic emission spectrometry. However, all of them require suitable reference materials to calibrate or validate. These reference materials ideally are being certified by reference procedures. The development of such reference procedures for sulfur and the four toxic elements cadmium, chromium, mercury and lead in plastics is described here. The procedures are based on double isotope dilution mass spectrometry including analyte–matrix separation. The applied mass spectrometric techniques are thermal ionization mass spectrometry as well as inductively coupled plasma mass spectrometry. Memory effects of mercury and dissolution of chromium(III) oxide have been considered especially. The expanded uncertainties have been improved from the percent range down to the per mill range during the development of the procedure from the early analysis of BCR-680/681 to the recent analysis of CCQM-P106. With the fully developed procedures expanded uncertainties (k = 2) between 0.1 and 0.4% for cadmium, chromium, lead and sulfur and around 1% for mercury can be achieved. The so developed procedures have been successfully applied to the certification of reference materials as well as to intercomparisons organized by CCQM. KW - ICPMS KW - TIMS KW - Reference materials KW - IDMS PY - 2010 DO - https://doi.org/10.1039/c0ja00034e SN - 0267-9477 SN - 1364-5544 VL - 25 IS - 10 SP - 1633 EP - 1642 PB - Royal Society of Chemistry CY - London AN - OPUS4-22044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang A1 - Klingbeil, Patrick T1 - The need for new SI-traceable magnesium isotopic reference materials JF - Analytical and bioanalytical chemistry KW - Isotopic Reference Material KW - Multi-collector ICP-MS KW - Isotopic abundance variations KW - Primary Isotopic Reference Material KW - Magnesium PY - 2004 DO - https://doi.org/10.1007/s00216-004-2859-8 SN - 1618-2642 SN - 1618-2650 VL - 380 SP - 876 EP - 879 PB - Springer CY - Berlin AN - OPUS4-6904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Paz, B. A1 - Koenig, Maren A1 - Pritzkow, Wolfgang T1 - A modified lead-matrix separation procedure shown for lead isotope analysis in Trojan silver artefacts as an example JF - Analytical and bioanalytical chemistry N2 - A modified Pb–matrix separation procedure using NH4HCO3 solution as eluent has been developed and validated for determination of Pb isotope amount ratios by thermal ionization mass spectrometry. The procedure is based on chromatographic separation using the Pb·Spec resin and an in-house-prepared NH4HCO3 solution serving as eluent. The advantages of this eluent are low Pb blanks (<40 pgmL-1) and the property that NH4HCO3 can be easily removed by use of a heating step (>60 °C). Pb recovery is >95 % for water samples. For archaeological silver samples, however, the Pb recovery is reduced to approximately 50 %, but causes no bias in the determination of Pb isotope amount ratios. The validated procedure was used to determine lead isotope amount ratios in Trojan silver artefacts with expanded uncertainties (k=2) <0.09 %. KW - Analyte-matrix separation KW - Mass spectrometry KW - Pb isotope ratio thermal ionization mass spectrometry KW - Archaeometry PY - 2013 DO - https://doi.org/10.1007/s00216-012-6323-x SN - 1618-2642 SN - 1618-2650 VL - 405 IS - 9 SP - 2995 EP - 3000 PB - Springer CY - Berlin AN - OPUS4-28170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang T1 - Isotope reference materials for present and future isotope research JF - Journal of analytical atomic spectrometry N2 - Isotope reference materials are essential to enable reliable and comparable isotope data. This article reviews the work in this field within the past years. The focus is on all stable elements, except for classical stable isotopes (H, C, N, O, S) and for radioactive elements. Currently available isotope reference materials are listed. The limitations of synthetic isotope mixtures being used to characterize these materials are discussed, as well as the limitations of the isotope reference materials, such as uncertainty and homogeneity. The needs for present research on isotope variations are being considered and are compared to the limitations of current isotope reference materials. This disagreement between both can only be solved by providing isotope reference materials defining a δ-scale for each element of interest. Such materials should be provided with additional data on isotope abundances whenever possible. As an outlook a possible outline for a new program on isotope reference materials is discussed. KW - IRM KW - Isotope reference materials KW - Delta-RM KW - ICPMS KW - TIMS KW - Synthetic mixtures PY - 2010 DO - https://doi.org/10.1039/c000509f SN - 0267-9477 SN - 1364-5544 VL - 25 SP - 923 EP - 932 PB - Royal Society of Chemistry CY - London AN - OPUS4-21841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinowskiy, D. A1 - Ren, T. A1 - Wang, J. A1 - Vocke Jr., R.D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. A1 - Näykki, T. A1 - Sara-Aho, T. A1 - Ari, B. A1 - Cankur, O. T1 - Final report of the key comparison CCQM-K98: Pb isotope amount ratios in bronze JF - Metrologia KW - CCQM KW - Metrology KW - Isotope amount ratios KW - Lead PY - 2014 UR - http://www.bipm.org/utils/common/pdf/final_reports/QM/K98/CCQM-K98.pdf DO - https://doi.org/10.1088/0026-1394/51/1A/08017 SN - 0026-1394 SN - 1681-7575 VL - 51 IS - 1A Tech. Suppl. SP - 08017-1 EP - 08017-47 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hioki, A. A1 - Nonose, N. A1 - Liandi, M. A1 - Jingbo, C. A1 - Liuxing, F. A1 - Chao, W. A1 - Cho, K.H. A1 - Suh, J.K. A1 - Min, H.S. A1 - Lim, Y. A1 - Recknagel, Sebastian A1 - Koenig, Maren A1 - Vogl, Jochen A1 - De Sena, R.C. A1 - Dos Reis, L.A. A1 - Borinsky, M. A1 - Puelles, M. A1 - Hatamleh, N. A1 - Acosta, O. A1 - Turk, G. A1 - Rabb, S. A1 - Sturgeon, R. A1 - Methven, B. A1 - Rienitz, O. A1 - Jaehrling, R. A1 - Konopelko, L.A. A1 - Kustikov, Y.A. A1 - Kozyreva, S.B. A1 - Korzh, A.A. T1 - Final report of the key coamparison CCQM-K88: Determination of lead in lead-free solder containing silver and copper JF - Metrologia N2 - The CCQM-K88 key comparison was organized by the Inorganic Analysis Working Group of CCQM to test the abilities of the national metrology institutes to measure the mass fraction of lead in lead-free solder containing silver and copper. National Metrology Institute of Japan (NMIJ), National Institute of Metrology of China (NIM) and Korea Research Institute of Standards and Science (KRISS) acted as the coordinating laboratories. The participants used different measurement methods, though most of them used inductively coupled plasma optical emission spectrometry (ICP-OES) or isotope-dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). Accounting for relative expanded uncertainty, comparability of measurement results was successfully demonstrated by the participating NMIs for the measurement of the mass fraction of lead in lead-free solder at the level of 200 mg/kg. It is expected that metals at mass fractions greater than approximately 100 mg/kg in lead-free solder containing silver and copper can be determined by each participant using the same technique(s) employed for this key comparison to achieve similar uncertainties mentioned in the present report. KW - CCQM KW - Metrology KW - IDMS PY - 2013 DO - https://doi.org/10.1088/0026-1394/50/1A/08002 SN - 0026-1394 SN - 1681-7575 VL - 50 IS - 08002, 1A (Technical Supplement 2013) SP - 1 EP - 19 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wunderli, S. A1 - Fortunato, G. A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang T1 - Meterology of determination for a new cadmium atomic weight and metrological application to cadmium in rice using MC-ICP-MS JF - Journal of Chinese mass spectrometry society / Zhipu-xuebao / Zhipu Xuehui KW - Atomic weight KW - Isotope KW - MC-ICP-MS KW - Cadmium KW - Determination of metrology of new cadmium atomic weight KW - Mass spectrometry KW - Review KW - Multicollector inductively coupled plasma mass spectrometry PY - 2003 SN - 1004-2997 VL - 24 IS - 4 SP - 467 EP - 470 CY - Beijing AN - OPUS4-31076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. T1 - Plan for comparison on absolute Cu isotope ratios by applying the isotope mixture approach N2 - The reference method for obtaining absolute isotope ratios still is the isotope mixture approach. Due the huge efforts required the full isotope mixture approach is applied only by a few institutes worldwide. To enable an IRWG key comparison with a sufficiently large number of participants a proposal for absolute cu isotope ratios is presented where participants will be provided with the enriched isotopes, the isotope mixtures and the samples. In parallel a pilot study will be organized where alternative approaches for obtaining absolute Cu isotope ratios can be applied. T2 - CCQM IRWG Meeting CY - Sevres, France DA - 24.04.2023 KW - Absolute isotope ratio KW - Traceability KW - Metrology PY - 2023 AN - OPUS4-57401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Pramann, A. A1 - Vogl, Jochen A1 - Lee, K.-S. A1 - Yim, Y.-H. A1 - Malinovskiy, D. A1 - Hill, S. A1 - Dunn, P. A1 - Goenaga-Infante, H. A1 - Ren, T. A1 - Wang, J. A1 - Vocke jr., R. D. A1 - Rabb, S: A. A1 - Narukawa, T. A1 - Yang, L. A1 - Mester, Z. A1 - Meija, J. A1 - Aref'ev, D. G. A1 - Marchin, V. A1 - Sharin, A. G. A1 - Bulanov, A. D. A1 - Potapov, A. M. A1 - Otopkova, P. A. A1 - Kessel, R. T1 - The comparability of the determination of the molar mass of silicon highly enriched in 28Si: results of the CCQM-P160 interlaboratory comparison and additional external measurements JF - Metrologia N2 - An international comparison study on the accurate determination of the molar mass M(Si) of silicon artificially enriched in 28Si (x(28Si) > 0.9999 mol mol−1) has been completed. The measurements were part of the high level CCQM-P160 pilot study assessing the ability of National Metrology Institutes (NMIs) and Designated Institutes (DIs) to make such measurements at the lowest possible levels of measurement uncertainty and to identify possible difficulties when measuring this kind of sample. This study supports the molar mass measurements critical to disseminating the silicon route to realizing the new definitions for the kilogram and the mole. Measurements were also made by one external research institute and an external company. The different institutes were free to choose their experimental (mass spectrometric) set-ups and equipment, thereby enabling also the comparison of different techniques. The investigated material was a chemically pure, polycrystalline silicon material. The subsequent modified single crystalline secondary product of this material was intended for the production of silicon which was used for two additional spheres in the context of the redetermination of the Avogadro constant NA, required for the revision of the International System of Units (SI) via fundamental constants which came into force from May 2019. The CCQM pilot study was organized by Physikalisch-Technische Bundesanstalt (PTB). Aqueous silicon solutions were shipped to all participating institutions. The data analysis as well as the uncertainty modelling and calculation of the results was predefined. The participants were provided with an uncertainty budget as a GUM Workbench® file as well as a free software license for the duration of the comparison. The agreement of the values of the molar mass (M(Si) = 27.976 942 577 g mol−1) was excellent with ten out of 11 results reported within the range of relative uncertainty of 1 × 10−8 required for the revision of the SI. KW - Absolute isotope ratio KW - Molar mass KW - Avogadro constant KW - Revision of the SI PY - 2020 DO - https://doi.org/10.1088/1681-7575/abbdbf VL - 57 IS - 6 SP - 065028 PB - IOP Science CY - Cambridge AN - OPUS4-51500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Scharf, Holger A1 - Lück, Detlef T1 - Establishment of traceability of inorganic chemical measurements to SI unit and application to the environmental analysis T2 - Meeting of CCQM-Inorganic Analytical Working Group T2 - Meeting of CCQM-Inorganic Analytical Working Group CY - Beijing, China DA - 2006-10-16 PY - 2006 AN - OPUS4-13995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kazlagic, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, A. A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Data of the characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study N2 - This dataset represents the electronic supplementary material (ESM) of the publication entitled "Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study", which is published in Geostandards and Geoanalytical Research under the DOI: 10.1111/GGR.12517. It consists of four files. 'ESM_Data.xlsx' contains all reported data of the participants, a description of the applied analytical procedures, basic calculations, the consensus values, and part of the uncertainty assessment. 'ESM_Figure-S1' displays a schematic on how measurements, sequences and replicates are treated for the uncertainty calculation carried out by PTB. 'ESM_Technical-protocol.pdf' is the technical protocol of the interlaboratory comparison, which has been provided to all participants together with the samples and which contains bedside others the definition of the measurand and guidelines for data assessment and calculations. 'ESM_Reporting-template.xlsx' is the Excel template which has been submitted to all participants for reporting their results within the interlaboratory comparison. Excel files with names of the the structure 'GeoReM_Material_Sr8786_Date.xlsx' represent the Rcon(87Sr/86Sr) data for a specific reference material downloaded from GeoReM at the specified date, e.g. 'GeoReM_IAPSO_Sr8786_20221115.xlsx' contains all Rcon(87Sr/86Sr) data for the IAPSO seawater standard listed in GeoReM until 15 November 2022. KW - Reference data KW - Strontium isotope ratio KW - Interlaboratory comparison KW - Reference material KW - Cement KW - Geological material KW - Value assignment KW - Measurement uncertainty KW - Conventional method PY - 2023 UR - https://doi.org/10.5281/zenodo.7804445 DO - https://doi.org/10.5281/zenodo.7804444 PB - Zenodo CY - Geneva AN - OPUS4-57809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, P. A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition - Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. T2 - CITAC Best Paper Award Ceremony CY - Online meeting DA - 21.06.2022 KW - Isotope dilution mass spectrometry KW - Standard addition KW - ICP-MS KW - Blank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2022 AN - OPUS4-55032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tukhmetova, Dariya A1 - Lisec, Jan A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Development of an Online Isotope Dilution CE/ICP–MS Method for the Quantification of Sulfur in Biological Compounds JF - Analytical Chemistry N2 - We report an analytical methodology for the quantification of sulfur in biological molecules via a speciesunspecific postcolumn isotope dilution (online ID) approach using capillary electrophoresis (CE) coupled online with inductively coupled plasma−mass spectrometry (online ID CE/ICP−MS). The method was optimized using a mixture of standard compounds including sulfate, methionine, cysteine, cystine, and albumin, yielding compound recoveries between 98 and 105%. The quantity of sulfur is further converted to the quantity of the compounds owing to the prior knowledge of the sulfur content in the molecules. The limit of detection and limit of quantification of sulfur in the compounds were 1.3−2.6 and 4.1−8.4 mg L−1, respectively, with a correlation coefficient of 0.99 within the concentration range of sulfur of 5−100 mg L−1. The capability of the method was extended to quantify albumin in its native matrix (i.e., in serum) using experimentally prepared serum spiked with a pure albumin standard for validation. The relative expanded uncertainty of the method for the quantification of albumin was 6.7% (k = 2). Finally, we tested the applicability of the method on real samples by the analysis of albumin in bovine and human sera. For automated data assessment, a software application (IsoCor) which was developed by us in a previous work was developed further for handling of online ID data. The method has several improvements compared to previously published setups: (i) reduced adsorption of proteins onto the capillary wall owing to a special capillary-coating procedure, (ii) baseline separation of the compounds in less than 30 min via CE, (iii) quantification of several sulfur species within one run by means of the online setup, (iv) SI traceability of the quantification results through online ID, and (v) facilitated data processing of the transient signals using the IsoCor application. Our method can be used as an accurate approach for quantification of proteins and other biological molecules via sulfur analysis in complex matrices for various fields, such as environmental, biological, and pharmaceutical studies as well as clinical diagnosis. Sulfur is an essential element in living organisms, where it plays important roles in various biological processes, such as protein synthesis, enzyme activity, and antioxidant defense. However, the biological effects of different sulfur species can vary widely, and imbalances in sulfur speciation have been observed in a range of diseases, including cancer, Alzheimer’s disease, and diabetes.1−3 The accurate quantification of sulfur and its species in biological samples requires sensitive and selective analytical techniques. In recent years, separation techniques coupled online with inductively coupled plasma−mass spectrometry (ICP−MS) have emerged as powerful online analytical tools complementary to molecular spectrometric methods for speciation analysis of biological compounds. External calibration4−9 and isotope dilution (ID)10−15 are common calibration approaches applied for online quantification of sulfur species in complex samples. The ID analysis is advantageous over. KW - Analytical Chemistry KW - CE/MC-ICP-MS KW - species-specific isotope information PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594736 DO - https://doi.org/10.1021/acs.analchem.3c03553 SN - 0003-2700 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-59473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stratulat, C. A1 - Ginghina, R. E. A1 - Bratu, A. E. A1 - Isleyen, A. A1 - Tunc, M. A1 - Hafner-Vuk, K. A1 - Frey, A. M. A1 - Kjeldsen, H. A1 - Vogl, Jochen T1 - Development- and Validation-Improved Metrological Methods for the Determination of Inorganic Impurities and Ash Content from Biofuels JF - energies N2 - In this study, five laboratories, namely, BRML (Romania), TUBITAK UME (Turkey), IMBIH (Bosnia and Herzegovina), BAM (Germany), and DTI (Denmark), developed and validated analytical procedures by ICP-MS, ICP-OES, MWP-AES, WD-XRF, and ID-MS for the determination of inorganic impurities in solid and liquid biofuels, established the budget of uncertainties, and developed the method for determining the amount of ash in the measurement range 0–1.2% with absolute repeatability less than 0.1% and absolute reproducibility of 0.2% (according to EN ISO 18122). In order to create homogeneous certified reference materials, improved methodologies for the measurement and characterization of solid and liquid biofuels were developed. Thus, information regarding the precision, accuracy, and bias of the method, and identifying the factors that intervened in the measurement of uncertainty were experimentally determined, supplementing the information from the existing standards in the field. KW - Development KW - Validate method KW - Biodiesel KW - ICP-MS KW - ICP-OES KW - MW-AES KW - WD-XRF KW - ID-MS KW - Inorganic impurities KW - Ash content KW - Wood chips PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578743 DO - https://doi.org/10.3390/en16135221 VL - 16 IS - 13 SP - 1 EP - 14 PB - MDPI AN - OPUS4-57874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Faßbender, Sebastian A1 - Chronakis, Michail A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Size determination of nanoparticles by ICP-ToF-MS using isotope dilution in microdroplets JF - Journal of Analytical Atomic Spectrometry N2 - Within this work, the combination of a microdroplet generator and an ICP-ToF-MS for nanoparticle analysis is presented. For the size determination of platinum nanoparticles an on-line isotope dilution analysis approach was developed. The 194Pt/195Pt isotopic ratio was used for the characterization of the particles, while the 182W/183W isotopic ratio was monitored simultaneously for mass bias correction. The on-line ID-MDG-sp-ICP-ToF-MS approach was deployed for the size determination of three platinum nanoparticle samples (50 nm, 63 nm, 70 nm); for validation, complementary size characterization techniques (sp-ICP-ToF-MS and TEM) were used. The robustness of this technique was evidenced, by using sodium chloride concentrations up to 100 mg L−1 as a matrix component. Our new on-line ID MDG-sp-ICP-ToF-MS approach is a promising tool for the fast and reliable determination of nanoparticles' size in severe matrix concentrations, e.g., environmental samples. KW - ICP-ToF-MS KW - Nanoparticles KW - Isotope Dilution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552727 DO - https://doi.org/10.1039/D2JA00072E SN - 0267-9477 VL - 37 IS - 6 SP - 1203 EP - 1207 PB - Royal Society of Chemistry AN - OPUS4-55272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, Anika A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study JF - Geostandards and Geoanalytical Research N2 - An interlaboratory comparison (ILC)was organised to characterise 87Sr/86Sr isotope ratios in geological and industrial reference materials by applying the so-called conventional method for determining 87Sr/86Sr isotope ratios. Four cements (VDZ 100a,VDZ 200a, VDZ 300a, IAG OPC-1), one limestone (IAG CGL ML-3) and one slate (IAG OU-6) reference materials were selected, covering a wide range of naturally occurring Sr isotopic signatures. Thirteen laboratories received aliquots of these six reference materials together with a detailed technical protocol. The consensus values for the six reference materials and their associated measurement uncertainties were obtained by applying a Gaussian, linear mixed effects model fitted to all the measurement results. By combining the consensus values and their uncertainties with an uncertainty contribution for potential heterogeneity, reference values ranging from 0.708134 mol mol-1 to 0.729778 mol mol-1 were obtained with relative expanded uncertainties of ≤ 0.007 %. This study represents an ILC on conventional 87Sr/86Sr isotope ratios, within which metrological principles were considered and the compatibility of measurement results obtained by MC-ICP-MS and by MC-TIMS is demonstrated. The materials characterised in this study can be used as reference materials for validation and quality control purposes and to estimate measurement uncertainties in conventional 87Sr/86Sr isotope ratio measurement. KW - Sr isotope analysis KW - Isotope ratios KW - Cement KW - Geological material KW - MC-TIMS KW - MC-ICP-MS KW - Interlaboratory comparison KW - Measurement uncertainty KW - Cconventional method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579836 DO - https://doi.org/10.1111/ggr.12517 SN - 1639-4488 VL - 47 IS - 4 SP - 821 EP - 840 PB - Wiley online library AN - OPUS4-57983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matschat, Ralf A1 - Richter, Silke A1 - Vogl, Jochen A1 - Kipphardt, Heinrich T1 - On the way to SI traceable primary transfer standards for amount of substance measurements in inorganic chemical analysis JF - Analytical and bioanalytical chemistry N2 - During its 25 years of existence, the Inorganic Analysis Working Group of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM IAWG) has achieved much in establishing comparability of measurement results. Impressive work has been done on comparison exercises related to real-world problems in fields such as ecology, food, or health. In more recent attempts, measurements and comparisons were focused on calibration solutions which are the basis of most inorganic chemical measurements. This contribution deals with the question of how to achieve full and transparent SI traceability for the values carried by such solutions. Within this framework, the use of classical primary methods (CPMs) is compared to the use of a primary difference method (PDM). PDM is a method with a dual character, namely a metrological method with a primary character, based on the bundling of many measurement methods for individual impurities, which lead to materials with certified content of the main component. As in classical methods, where small corrections for interferences are accepted, in PDM, many small corrections are bundled. In contrast to classical methods, the PDM is universally applicable to all elements in principle. Both approaches can be used to certify the purity (expressed as mass fraction of the main element) of a high-purity material. This is where the metrological need of National Metrology Institutes (NMIs) for analytical methods meet the challenges of analytical methods. In terms of methods, glow discharge mass spectrometry (GMDS) with sufficient uncertainties for sufficiently small impurity contents is particularly noteworthy for the certification of primary transfer standards (PTS), and isotope dilution mass spectrometry (IDMS), which particularly benefits from PTS (back-spikes) with small uncertainties, is particularly noteworthy for the application. The corresponding relative uncertainty which can be achieved using the PDM is very low (< 10−4). Acting as PTS, they represent the link between the material aspect of the primary calibration solutions and the immaterial world of the International System of Units (SI). The underlying concepts are discussed, the current status of implementation is summarised, and a roadmap of the necessary future activities in inorganic analytical chemistry is sketched. It has to be noted that smaller measurement uncertainties of the purity of high-purity materials not only have a positive effect on chemical measurements, but also trigger new developments and findings in other disciplines such as thermometry or materials science. KW - Inorganic chemical analysis KW - Primary transfer standards (PTSs) KW - Traceability KW - Classical primary measurement method (CPM) KW - Primary difference measurement method (PDM) KW - Metrology in chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572743 DO - https://doi.org/10.1007/s00216-023-04660-4 SN - 1618-2642 SN - 1618-2650 VL - 415 SP - 3057 EP - 3071 PB - Springer CY - Berlin AN - OPUS4-57274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope ratio working group at CCQM N2 - The presentation gives the reasons for initiation of an isotope ratio working group at CCQM level, describes the process and provides the auduince with the initial working plan. T2 - EURAMET TC-MC Workshop on Isotope Ratio Analysis CY - Bern, Switzerland DA - 05.02.2020 KW - Metrology KW - Absolute isotope ratio KW - Isotope ratio KW - Delta value PY - 2020 AN - OPUS4-50344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ma, L. A1 - Feng, L. A1 - Hioki, A. A1 - Cho, K.H. A1 - Vogl, Jochen A1 - Berger, Achim A1 - Turk, G. A1 - Macleod, S. A1 - Labarraque, G. A1 - Tong, W.F. A1 - Schiel, D. A1 - Yafa, C. A1 - Valiente, L. A1 - Konopelko, L.A. A1 - Quetel, C. A1 - Vermaercke, P. A1 - Manzano, J.V.L. A1 - Linsky, M. A1 - Cortés, E. A1 - Tangpitayakul, S. A1 - Plangsangmas, L. A1 - Bergamaschi, L. A1 - Hearn, R. T1 - International comparison of the determination of the mass fraction of cadmium, chromium, mercury and lead in polypropylene: the Comité Consultatif pour la quantité de matière pilot study CCQM-P106 JF - Accreditation and quality assurance KW - Cadmium KW - Chromium KW - Mercury KW - Lead KW - Polypropylene KW - CCQM PY - 2010 DO - https://doi.org/10.1007/s00769-009-0574-z SN - 0949-1775 SN - 1432-0517 VL - 15 IS - 1 SP - 39 EP - 44 PB - Springer CY - Berlin AN - OPUS4-20787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Quétel, C. A1 - Ostermann, Markus A1 - Papadakis, I. A1 - Van Nevel, L. A1 - Taylor, P.D.P. T1 - Contribution to the certification of B, Cd, Mg, Pb, Rb, Sr, and U in a natural water sample for the International Measurement Evaluation Programme Round 9 (IMEP-9) using ID-ICP-MS JF - Accreditation and quality assurance N2 - The present paper describes the contribution of the Institute for Reference Materials and Measurements to the certification of B, Cd, Mg, Pb, Rb, Sr, and U amount contents in a natural water sample, in round 9 of the International Measurement Evaluation Programme (IMEP-9). The analytical procedure to establish the reference values for B, Cd, Mg, Pb, Rb, Sr, and U amount contents was based on isotope dilution inductively coupled plasma-mass spectrometry used as a primary method of measurement. Applying this procedure reference values, traceable to the SI, were obtained for the natural water sample of IMEP-9. For each of the certified amount contents presented here a total uncertainty budget was calculated using the method of propagation of uncertainties according to ISO and EURACHEM guidelines. The measurement procedures, as well as the uncertainty calculations are described for all seven elements mentioned above. In order to keep the whole certification process transparent and so traceable, the preparations of various reagents and materials as well as the sample treatment and blending, the measurements themselves, and finally the data treatment are described in detail. Explanations focus on Pb as a representative example. The total uncertainties (relative) obtained were less than 2% for all investigated elements at amount contents in the pmol/kg up to the high 7mol/kg range, corresponding to low 7g/kg and mg/kg levels. KW - IMEP-9 KW - ID-ICP-MS KW - IDMS KW - Uncertainty budget KW - Certification PY - 2000 DO - https://doi.org/10.1007/s007690000145 SN - 0949-1775 SN - 1432-0517 VL - 5 SP - 272 EP - 279 PB - Springer CY - Berlin AN - OPUS4-7216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudek, Gabriele A1 - Alber, D. A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel A1 - Vogl, Jochen A1 - Görner, Wolf T1 - Determination of the beta- branching ratio of 64Cu by mass spectrometric investigations of the decay products in neutron transmuted copper JF - Applied radiation and isotopes N2 - The ?- branching ratio of 64Cu was determined by investigating the resulting decay products in copper doped by neutron transmutation. The numbers of 64Zn and 64Ni atoms were analyzed using isotope dilution analysis combined with thermal ionization mass spectrometry. A ?- branching ratio of (38.06±0.30)% was obtained, which agrees with the study of Kawada (Appl. Radiat. Isot. 37 (1) (1986) 7) to a higher accuracy. However, our result differs from the value cited in the NUDAT database of (39.0±0.3)%. KW - NTD KW - Copper KW - Zinc KW - Nickel KW - Branching ratio KW - Cu-64 KW - TIMS KW - IDMS KW - Isotope dilution KW - Thermal ionization mass spectrometry KW - Neutron transmutation doping PY - 2002 DO - https://doi.org/10.1016/S0969-8043(01)00180-4 SN - 0883-2889 SN - 0969-8043 N1 - Geburtsname von Dudek, Gabriele: Wermann, G. - Birth name of Dudek, Gabriele: Wermann, G. VL - 56 SP - 145 EP - 151 PB - Elsevier CY - Amsterdam AN - OPUS4-7221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, J. E. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, A. A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. T1 - Interlaboratory comparison on conventional 87Sr/ 86Sr isotope ratio analysis by applying MC-ICP-MS and MC-TIMS N2 - The variation of isotope ratios is increasingly used to unravel natural and technical questions. With new upcoming techniques and research topics in the last two decades, such as material provenance or food authenticity to animal and human migration studies, the number of published isotope data has strongly increased. Here, isotope reference materials are indispensable to enable a reliable method validation or even SI-traceability. The fast development and broad availability of inductively coupled plasma mass spectrometry instrumentation (ICP-MS) also lead to an expansion of the classical research areas and new elements are under investigation. Owing to this large expansion of the field, the production and certification of isotope reference materials for calibration and validation is lagging behind, even for classical applications such as conventional 87Sr/86Sr isotope ratio analysis. To improve this situation, BAM organized an interlaboratory comparison (ILC) comprising of thirteen international laboratories for the characterisation of 87Sr/86Sr isotope ratios in geochemical and industrial reference materials. Six reference materials (four cements and two rocks) were provided as powder requiring extensive sample preparation prior to isotopic measurement. Additional requirements included the use of the conventional method for obtaining 87Sr/86Sr isotope ratios, also known as radiogenic 87Sr/86Sr isotope ratios, and the assessment of the measurement uncertainty. The primary goal was to evaluate potential differences in the application of multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) for conventional 87Sr/86Sr isotope ratio determination, with a secondary goal to provide reference values for the 87Sr/86Sr isotope ratios in these potential new reference materials. All reported results are accompanied by an uncertainty statement and are traceable to the conventional method, which will be described in detail within this presentation. Current state-of-the-art statistical models were used to ensure the proper evaluation of the reported results and their associated measurement uncertainties within the frame of this ILC. Combined with results from appropriate homogeneity assessment, reference values for 87Sr/86Sr isotope ratios will be assigned. T2 - European Winter Conference on Plasma Spectrochemistry CY - Ljubljana, Slovenia DA - 29.01.2023 KW - Conventional isotope ratio KW - Reference material KW - Uncertainty KW - Comparability PY - 2023 AN - OPUS4-58011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kazlagic, Anera A1 - Vogl, Jochen A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, J. E. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. A1 - Prohaska, T. A1 - Retzmann, A. A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. T1 - Investigating the differences in 87Sr/ 86Sr isotope ratio measurements between MC-ICP-MS and MC-TIMS in cement RMs N2 - Thirteen laboratories participated in an international interlaboratory comparison for the determination of 87Sr/86Sr isotope ratios in four cement reference materials (RM) using the conventional method for 87Sr/86Sr isotope ratios analyses. Sample dissolution and Sr isolation via ion exchange chromatography were required since the cement samples were distributed as powders. Analytical preparation included the use of various digestion methods including mixed mineral acids, microwave/acid, bomb/acid digestion or borate fusion, followed by Sr separation using ion exchange chromatography. In this study, we evaluated whether any statistically significant differences were attributable to instrumental differences (i.e., MC-ICP-MS and MC-TIMS), or to laboratory-specific techniques (different sample preparation techniques, Sr isolation and the procedures for correcting the data outputs). To evaluate these effects, consensus values for cement RMs and associated standard uncertainties were estimated by fitting a linear, Gaussian mixed effects model using the R function “lmer” defined in package “lme4”. No statistically significant effects (SSE) attributable to instrumental differences regardless of whether the materials are considered together or separately were evident. There were SSE attributable to differences between laboratories for three cement RMs when the individual cements were considered separately. Since consideration or disregard for such differences does not induce significant changes in the estimate of the consensus values for the 87Sr/86Sr isotope ratios in cement RMs, these effects can safely be neglected when calculating the best estimates for the true values of 87Sr/86Sr isotope ratios in these RMs. T2 - ICP-MS Anwender*innentreffen 2022 CY - Leoben, Austria DA - 05.09.2022 KW - Conventional isotope ratio KW - Reference material KW - Metrology KW - Traceability KW - Uncertainty PY - 2022 AN - OPUS4-55682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pritzkow, Wolfgang A1 - Vogl, Jochen A1 - Köppen, Robert A1 - Ostermann, Markus T1 - Determination of sulfur isotope abundance ratios for SI-traceable low sulfur concentration measurements in fossil fuels by ID-TIMS JF - International Journal of Mass Spectrometry N2 - The present work describes the development of an existing TIMS procedure to a reference procedure for low sulfur concentration measurements in fossil fuels. With this enhanced procedure SI-traceable sulfur mass fractions below 10 mg kg-1 can be obtained. The achieved detection limit is approximately 0.2 mg kg-1. The procedure was validated by certified reference materials. The procedure was already applied to candidate reference materials and to samples analysed within projects of the “Comité Consultatif pour la Quantité de Matière – CCQM”. Additionally the influence of the isotopic composition on the results and its corresponding uncertainty was studied. Reference data published in the literature on the isotopic composition of sulfur were assessed. KW - TIMS KW - IDMS KW - Low sulfur KW - Fossil fuel KW - Reference procedure PY - 2005 DO - https://doi.org/10.1016/j.ijms.2004.10.024 SN - 0168-1176 SN - 0020-7381 SN - 1387-3806 SN - 1873-2798 VL - 242 SP - 309 EP - 318 PB - Elsevier CY - Amsterdam AN - OPUS4-7222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Stephan, D. A1 - Ostermann, Markus A1 - Possolo, A. A1 - Vogl, Jochen T1 - Fingerprinting Portland cements by means of 87Sr/86Sr and 143Nd/144Nd isotope ratios and geochemical profiles JF - Advances in Cement Research N2 - This study uses conventional 87Sr/86Sr and 143Nd/144Nd isotope and interelement ratios of Ca, Sr, K, Mn, Mg and Ti as fingerprints for provenancing ordinary Portland cements (OPC). Herein, the first database of Sr and Nd isotope ratios investigated in OPCs, stemming from 29 cement plants located worldwide, was created. The results show that the Sr isotope ratios of OPCs are higher than those of seawater from the observed geological period. The spread of 143Nd/144Nd in OPCs is not as large as the spread for 87Sr/86Sr isotope ratios. However, the combination of both Sr and Nd isotope ratios provides the potential for distinguishing between cements of different production sites. Most of the OPCs investigated have measurable differences in their 87Sr/86Sr and 143Nd/144Nd isotope ratios, which can be employed as a valuable analytical fingerprinting tool. In the case of equivocal results, divisive hierarchical clustering was employed to help overcome this issue. The construction of geochemical profiles allowed the computing of suitably defined distances between cements and clustering them according to their chemical similarity. By applying this methodology, successful fingerprinting was achieved in 27 out of the 29 ordinary Portland cements that were analysed. KW - Elemental fingerprints KW - Geochemistry KW - Portland cement KW - Sr and Nd isotope analysis KW - Statistical analysis PY - 2023 DO - https://doi.org/10.1680/jadcr.23.00018 SN - 0951-7197 SP - 1 EP - 12 PB - Emerald Publishing Limited AN - OPUS4-57979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bürger, S. A1 - Vogl, Jochen A1 - Kloetzli, U. A1 - Nunes, L. A1 - Lavelle, M. ED - Prohaska, T. ED - Irrgeher, J. ED - Zitek, A. ED - Jakubowski, Norbert T1 - Thermal ionisation mass spectrometry T2 - Sector field mass spectrometry for elemental and isotopic analysis N2 - Thermal ionisation, also known as surface ionisation, was one of the first ionisation techniques developed for mass spectrometry, having been invented as early as 1918. The ionization process, described by the empirically derived “fractionation laws”, is widely understood. Isotope ratio measurements can be achieved with high precision and accuracy. Due to this, thermal ionisation has paved the way for great scientific achievements including: the discovery of new isotopes, the determination of radioactive half-lives and atomic weights of the elements, the accurate determination of the age of the earth and investigations on human society in the past such as mobility and trade. TIMS is still regarded as ‘golden standard’ in isotope ratio measurements. Thus the method is a reference technique that remains at the forefront of isotopic analysis particularly in the fields of metrology. A concise overview is given here of the technical background of thermal ionisation as well as the numerous applications of this technique in earth sciences, industry, metrology, and nuclear forensics. PY - 2015 SN - 978-1-84973-392-2 SN - 978-1-84973-540-7 DO - https://doi.org/10.1039/9781849735407-00381 SN - 2044-253X N1 - Serientitel: New developments in mass spectrometry – Series title: New developments in mass spectrometry VL - 3 SP - Chapter 14, 381 EP - 438 CY - Cambridge, UK AN - OPUS4-32557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosner, Martin A1 - Pritzkow, Wolfgang A1 - Vogl, Jochen T1 - Boron isotope compositions of food: A potential tool for food authentication T2 - Jahrestagung Deutsche Mineralogische Gesellschaft 2008 T2 - Jahrestagung Deutsche Mineralogische Gesellschaft 2008 CY - Berlin, Deutschland DA - 2008-09-14 KW - Boron isotopes KW - Food KW - Provenance studies PY - 2008 SP - 1 CY - Berlin AN - OPUS4-20785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Pb isotope ratio analysis N2 - The determination of Pb isotope ratios by TIMS and ICP-MS is discussed and applications from archaeology are provided. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Isotope reference material KW - Provenance KW - Silver artefacts KW - Curse tablets PY - 2023 AN - OPUS4-59167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Measurement Uncertainty in Isotope Ratio Measurements N2 - The importance for measurement uncertainty in isotope ratio measurements is expalined and different approaches for calculating measurement uncertainty for absolute isotope ratios, isotope deltas and conventional isotope ratios are presented. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Isotope delta KW - Absolute isotope ratio KW - Conventional isotope ratio PY - 2023 AN - OPUS4-59169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Sr isotope ratio analysis N2 - The measurment of Sr isotope ratios is described and examples from food authenticity, provenancing of cement and pietas are provided. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Conventional isotope ratios KW - Gypsum KW - Cement KW - Cheese PY - 2023 AN - OPUS4-59168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Detector deadtime N2 - Deadtime effects for counting detectors in ICP-MS and deadtime correction are discussed. Approaches for determining the deadtime are presented. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Counting detector KW - Detector deadtime KW - Isotope ratio KW - Dual mode detector PY - 2023 AN - OPUS4-59166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope Ratio Analysis N2 - Basic information on isotope ratio analysis is provided. Isotope fractionation is discussed and the measurement process is described. Additionally, practical examples are provided. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Isotope fractionation KW - Mass spectrometry KW - Terminology PY - 2023 AN - OPUS4-59164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope Ratio Measurement - Quantities and calibration N2 - The quantities and the terminoly in isotope ratio measurements is presented, followed by explaining calibration approaches for isotope ratio measurements. Sources of error and bias are presented and special focus is given on single detector mass spectrometry. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Isotope fractionation KW - Matrix separation KW - Interferences KW - Noise KW - Optimization PY - 2023 AN - OPUS4-59165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, Martin A1 - Pritzkow, Wolfgang T1 - The need for new isotope reference materials JF - Analytical and bioanalytical chemistry N2 - Isotope reference materials are needed to calibrate and validate analytical procedures used for the determination of isotope amount ratios, procedurally defined isotope ratios or so-called δ values. In contrast to the huge analytical progress in isotope ratio analytics, the production of isotope reference materials has not kept pace with the increasing needs of isotope analysts. Three representative isotope systems are used to explain the technical and non-technical difficulties and drawbacks, on one hand, and to demonstrate what can be achieved at its best, on the other hand. A clear statement is given that new isotope reference materials are needed to obtain traceable and thus comparable data, which is essential for all kinds of isotope research. The range of available isotope reference materials and δ reference materials should be increased and matrix reference materials certified for isotope compositions or δ values, which do not exist yet, should be provided. KW - Isotope reference materials KW - Delta reference materials KW - Synthetic isotope mixtures KW - Mass spectrometry KW - Comparability KW - Traceability KW - Measurement uncertainty PY - 2013 DO - https://doi.org/10.1007/s00216-012-6605-3 SN - 1618-2642 SN - 1618-2650 VL - 405 IS - 9 SP - 2763 EP - 2770 PB - Springer CY - Berlin AN - OPUS4-28169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, O. A1 - Rosner, M. A1 - Brandt, B. A1 - Kasemann, S. A. A1 - Kraft, R. A1 - Malinovskiy, D. A1 - Meixner, A. A1 - Noordmann, J. A1 - Raab, S. A1 - Schuessler, J. A. A1 - Vocke, R. D. T1 - Calibration of Mg isotope amount ratios and delta values N2 - In the past, δ26/24Mg measurements were referenced to NIST SRM 980, the initial zero of the δ26/24Mg scale. With the development of MC-ICPMS, the detection of small but measurable isotopic differences in different chips of SRM 980 became apparent. To solve this problem a suite of magnesium isotope reference materials, ERM-AE143, -AE144 and -AE145, has been certified in a first study by applying an ab initio calibration for absolute Mg isotope ratios without any a priori assumptions, a procedure which fulfils all requirements of a primary method of measurement. We could achieve for the first time measurement uncertainties for isotope amount ratios close to the typical precision of magnesium delta values, δ26/24Mg, which are at the 0.1 ‰ level (2SD). In addition, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multi-collector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ to 0.7 ‰. With these isotope reference materials, it is possible to establish SI-traceability for magnesium delta measurements. To realize this, we organized a second study within which five expert laboratories participated to cross-calibrate all available magnesium isotope standards, which are NIST SRM 980, IRMM-009, ERM-AE143, ERM-AE144, ERM-AE145 and the standards DSM3 and Cambridge-1. The mean δ26/24Mg values for the individual iRMs, calculated from the laboratory means show 2 SD reproducibilities varying between 0.025 and 0.093 ‰. Propagated measurement uncertainties suggest a standard uncertainty of about 0.1‰ for δ26/24Mg determinations (2SD). Thus, SI traceability for magnesium isotope amount ratios and delta values is demonstrated to be established. T2 - European Winter Conference on Plasma Spectrochemistry CY - Pau, France DA - 03.02.2019 KW - Delta value KW - SI-traceability KW - Absolute isotope ratio PY - 2019 AN - OPUS4-47710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Vogl, Jochen A1 - Klingbeil, P. A1 - Pritzkow, W. A1 - Riebe, Gundel A1 - Wermann, G. A1 - Turner, P. A1 - Wortel, N. A1 - Woittiez, J. T1 - HIIRM final report N2 - Accurate analytical results have become more and more an absolute essential tool for further progresses in technology and science. Precision however, often used in this context as a quality criterion for analytical methods, is not a replacement for accuracy in any way. Therefore, analytical procedures are necessary, which will generate reliable and accurate results and can be used for evaluation of other analytical procedures and certification of reference materials (RM). Especially the certification of reference materials for the amount content of trace elements requires highly accurate results with a small combined uncertainty. The best example for an analytical procedure having this capability is undoubtedly Isotope Dilution Mass Spectrometry, for inorganic as well as for organic applications. Applied on Thermal Ionization Mass Spectrometry (TIMS) isotope dilution provides results of highest quality and proven high accuracy especially in the field of RM certifications for more than 30 years. The major drawback of this approach often is the necessity for a complex chemical separation step. A major advantage of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is the potential to cope with a simplified or an on-line-carried-out sample preparation. A key requirement of isotope dilution analysis however is the accurate and precise determination of isotope ratios, because of its limiting factor for the accuracy and the total uncertainty of the result. Very precise isotope ratios can be determined in combination with a detection system that is capable of simultaneous detection of different isotopes, a so-called multi-collector system. The objective of the presented project is to evaluate the advantages of such a multi-collector ICP-MS for the application of IDMS in the field of trace elemental analysis in reference materials. The focus is on the development of simple and fast procedures for isotope ratio measurements in general and IDMS analysis in particular. Furthermore, it is an objective to develop and evaluate on-line spiking procedures. One of the first conclusions, which had a severe impact on the HIIRM project, arose during the early days of the project. Currently most certification experiments are accomplished by certification campaign based on a variety of participants’ results. The sample preparation, sending, analyzing and data evaluation however require lot of resources and the process may take a long time. An alternative way is given by using fewer participants with methods of higher metrological quality. For elemental amount contents such a method undoubtedly is isotope dilution analysis and multi-collector ICP-MS offers the necessary precision and matrix robustness and ruggedness as said above. Therefore, a multiple collector ICP-MS was manufactured as part of the project instead of the originally planned high-resolution instrument. Due to the novelty of the multicollector ICP-MS instrument, a lot of additional fundamental research became necessary. Especially interferences needed further attention. Fortunately, the IsoProbe is additionally equipped with a high-resolution option and with a brand new collison cell. The high-resolution option however can only be used to identify interferences but cannot be used to quantify them. On the other hand, the use of the collision cell proved to be a vital tool to overcome interferences. This is especially true because high resolution would have reduced the available sensitivity by a factor of ~100. Applying the collision cell technology the high sensitivity was maintained whilst most interferences were eliminated. However finding the right parameters of operation for the collision cell became a huge part of the method development process. A variety of gases like argon, helium, hydrogen, deuterium, nitrogen, krypton and xenon were tested for their suitability. Especially the tests accomplished for iron determinations revealed that carefully selected parameters have an incredible influence on the quality of the final results. Nonetheless collision cell technology will undoubtedly be widely used for newer ICP-MS instrumentation and contribute to eliminate wrong analytical values caused by interferences. The enhanced sensitivity of the instrument revealed also problems not detectable by other means. The control of contaminations seems to be one of the major analytical challenges in the future. Sector field based ICP-MS will give the user an opportunity to trace sources of contamination back to their origin and eliminate them. Even lower limits of detection will be the result as well as an enhanced reliability for analysts dealing with higher amount contents. The analyst will also benefit in controlling blank levels when the method of isotopically spiked procedure blanks is used as demonstrated in this project. Another main part of the project was the validation of the developed procedures. The first validation step was successfully accomplished by applying these procedures on the standard solutions provided by NRG. The main part of this validation however consisted of the evaluation of the fundamental parameters of the isotope dilution process and related measurements. This approach turned out to be superior compaired to the first step as a highly reliable uncertainty calculation can be easily performed. The best reputation and acceptance of the methods can however only be accomplished by participating in certification campaigns or in interlaboratory comparisons on highest metrological level. The results of the participations in general were brilliant. Not only the results but also the obtained realistic uncertainties were of superior quality. Direct comparisons at BAM with the results obtained by a multicollector TIMS applying the same calculation schemes showed the benefits of using multicollector ICP-MS. The main benefits of ICP-MS were identified, of which the first one is the enhanced precision of the isotope ratio measurement. For a variety of elements the values obtained by multicollector ICP-MS are even more precise than the ones obtainable by multicollector TIMS. The second important advantage identified was the simplified sample preparation. The laborious and time consuming analyte-matrix-separation step as necessary for TIMS measurements can either be omitted or at least be drastically reduced. Therefore, the advantages regarding time and enhanced sample throughput will result in further spread of ICP-MS in general and multicollector ICP-MS in particular. The third major part in terms of the method development process was mainly focused on developing an online isotope dilution system. The volumetric instead of the gravimetric IDMS approach proved difficult, if the high demands necessary for RM definition measurements are to be fulfilled. The major obstacle in this case is the missing stability and precision in terms of mass flow. Consequently, the initial development failed as the system made up of two piezoelectric droplet injectors was unable to reach the required stability as well as precision. The thereupon-created system consisting of two HPLC pumps proved to be far more valuable regarding automation and particularly the quantification of transient signals. Nevertheless, such a system will probably be rarely used in certification campaigns, as the gain of time is too small compared to the loss of reliability. However, this system proved most valuable in terms of species-specific elemental analysis as preliminary investigations showed. In this context this system will be suitable for certification measurements, as the major uncertainty contributions derive from sampling, sample treatment and species distribution and as moreover all availabel methods demonstrate far beyond. During the whole project, one of the main concerns regarding the multicollector ICP-MS instrument were software issues caused by the early development state of the original control programs. A lot of effort was necessary to accomplish the necessary data manipulations externally. The development of a new software suite by Micromass for the HIIRM project has solved this issue almost completely. With the new software suite and the validated parameters of measurement a step forward for institutes dealing with reference material certifications was achieved. Future certifications campaigns for minor elemental contents in different matrices should be performed by a small number of participants from highly qualified institutes. These institutes should apply very reliable methods of measurement like the ones developed in the HIIRM project. Many resources may be saved that way while the outcome of the certifications may easily be improved. ICP-MC-MS has the potential to be an important method in this context. Stable isotope dilution analysis in combination with a multi-detector ICP-MS, equipped with a hexapole collision cell for the suppression of important spectral interferences and for enhanced sensitivity, proved to be an advanced method of elemental analysis with a high potential for matrix independent measurements. Since ICP mass spectrometers of this type have only recently been introduced, no systematic evaluation of the capabilities of this specific application of the ICP-IDMS method has yet been made. KW - interferences KW - collision cell KW - ICPMS KW - IDMS PY - 2002 SP - 1 EP - 166 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Metrology in Chemistry - Basics and international structure N2 - Basics in Metrology in Chemistry are explained and the international structure of the metrology network is presented. T2 - Workshop & Training "Isotope Ratio Analysis" CY - Pathum Thani, Thailand DA - 06.12.2023 KW - Metrology in Chemistry KW - Traceability KW - Uncertainty PY - 2023 AN - OPUS4-59163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ostermann, Markus A1 - Janisch, Nadine A1 - Vogl, Jochen T1 - On the determination of the moisture content in different matrix materials T2 - Internationale Konferenz "Trends in Sample Preparation 2002" T2 - Internationale Konferenz "Trends in Sample Preparation 2002" CY - Seggau, Austria DA - 2002-06-30 PY - 2002 AN - OPUS4-1399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Koenig, Maren T1 - Isotope dilution mass spectrometry applied as primary method of measurement with examples from the ENVCRM project N2 - The presentation describes the application of isotope dilution mass spectrometry as a primary method of measurement with all Advantages and disadvantges. This is exempflified for the candidate reference materials within the EnvCRM Project. T2 - Workshop Matrix Reference Materials for Environmental Analysis CY - Gebze, Turkey DA - 16.05.2018 KW - Reference material KW - Soil KW - Heavy metals PY - 2018 AN - OPUS4-45896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vogl, Jochen T1 - Roadmap for the purity determination of pure metallic elements – Basic rinciples and helpful advice T2 - BIPM Webpage N2 - High purity materials can serve as a realisation of the Système International d’Unitès (SI) unit amount of substance for the specific element. Solutions prepared from such high purity materials using gravimetric preparation and the concept of molar mass are used as calibration solutions in many fields of analytical chemistry. Calibration solutions prepared this way provide the traceability to the SI and are the metrological basis in elemental analysis. The preparation and characterization of such primary pure substances, representing the realisation of the SI unit amount of substance, is undertaken only by a small number of National Metrology Institutes (NMI) and Designated Institutes (DI). Many other NMIs and DIs, however, prepare elemental calibration solutions as calibrants for their measurement services, such as the certification of matrix Reference Materials or the provision of reference values for Proficiency Testing schemes. The elemental calibration solutions used for this purpose are not a direct service to customers, such as preparing secondary calibration solutions, but provide the source of traceability for the other services. Hence, it is necessary for the NMI or DI to obtain data on the purity of the pure metals or other materials used to prepare the solutions with measurement uncertainties meeting the needs of the above described services. This is commonly undertaken as a “fit for purpose” assessment, appropriate for the uncertainty requirement of the service provided to customers. As a consequence, total purity measurements are a long-term strategy of CCQM-IAWG. Several studies were conducted (CCQM-P107, CCQM-K72 and CCQM-P149) on the measurement of the purity of zinc. From these studies, several conclusions can be drawn for the purity assessment of a pure (metallic) element. These conclusions will be put together in this document in order to assist all NMIs/DIs in performing a purity assessment, whenever needed. KW - Purity assessment KW - Metal assay approach KW - Impurity assessment approach KW - Traceability PY - 2018 UR - https://www.bipm.org/wg/CCQM/IAWG/Allowed/April_2017/CCQM-IAWG17-28.pdf.pdf SP - 1 EP - 9 CY - Sevre AN - OPUS4-46834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pramann, A. A1 - Vogl, Jochen A1 - Flierl, L. A1 - Rienitz, O. T1 - Determination of absolute (SI‐traceable) isotope ratios: The use of Gravimetric Isotope Mixtures N2 - The presentation is brief overview on how to use gravimetric isotope mixtures to determine SI traceable isotope ratios. There is no mass spectrometer on earth that directly measures isotope ratios. Mass spectrometers will always measure signal intensity ratios instead. The actual problem is that the measured intensity ratios differ more or less from the isotope ratios. The difference can be up to more than 10 % in case of lithium while it‘s below 1 % in case of the heavier elements like lead or uranium. Consequently, the signal intensity ratios are expressed for example in V/V depending on the type of mass spectrometer you are using, while the isotope ratios are expressed in mol/mol. This phenomenon is called Instrumental Isotopic Fractionation (or short IIF) but the more common name is still mass bias (even though this name is not entirely correct). To convert the measured into the isotope ratio usually a simple multiplication with a so-called correction (or short K) factor is done. Therefore, the problem is to determine the K factor. In absence of isotope reference materials the golden route is via gravimetric isotope mixtures, which will be explained within the presentation. T2 - CCRI-CCQM Workshop on the use of mass spectrometry in radionuclide metrology: Opportunities and challenges - Video Tutorial CY - Online meeting DA - 14.02.2023 KW - Absolute isotope ratio KW - Traceability KW - Uncertainty KW - Isotope mixtures PY - 2023 AN - OPUS4-57172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - The triple isotope calibration approach BT - A new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The calibration of isotope ratio measurements is an ongoing challenge since instrumental isotope fractionation (IIF) has been detected in mass spectrometry (MS). There is a variety of approaches which either bypass IIF such as delta measurements or refer to reference materials (RMs) and thus shifting the problem of calibration to somebody else: the RM producer. For certifying isotope RMs with absolute isotope ratios only a few approaches are available, namely the isotope mixture approach, the double spike approach, the mass bias regression model and total evaporation in TIMS. All of them require either enriched isotopes, isotope RMs of another element or an RM for correcting residual error. As the enriched isotopes required for the isotope mixture and the double spike approach need to be fully characterized beforehand, all mentioned calibration approaches require a standard. Here, a new and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements has been developed. The underlying principle is that each MS suffers from IIF and thus yields a specific isotope fractionation line in a three-isotope diagram. When applying a second MS featuring a different ionization mechanism, we obtain a second isotope fractionation line with a different slope in the same three-isotope diagram. In both cases the absolute isotope ratios range somewhere on the isotope fractionation line. Consequentially, the intersect of both lines yield the absolute isotope ratios of the measured sample. This theory has been tested by measuring Cd and Pb isotope ratios of suitable isotope RMs with a TIMS and an ICP-MS, both equipped with multi-collector array. During the measurements the ionization conditions were changed such that different extent of the isotope fractionation has been achieved. With the resulting data set the theory described above could be verified. The obtained absolute isotope ratios were metrologically compatible with the certified isotope ratios. The remaining average bias of -5 ‰ can be reduced with further improvements. The calibration approach is universal and can be applied to any multi-isotopic element and it is not limited by the type of the mass spectrometer. T2 - Virtual Goldschmidt 2021 CY - Online meeting DA - 04.07.2021 KW - Absolute isotope ratio KW - Traceability KW - Metrology KW - Calibration KW - Uncertainty KW - Triple isotope fractionation PY - 2021 AN - OPUS4-53023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linsinger, T. A1 - Andrzejuk, W. A1 - Bau, A. A1 - Charoud-Got, J. A1 - De VOs, P. A1 - Emteborg, H. A1 - Hearn, R. A1 - Lamberty, A. A1 - Oostra, A. A1 - Pritzkow, Wolfgang A1 - Quétel, C. A1 - Roebben, G. A1 - Tresl, I. A1 - Vogl, Jochen A1 - Wood, S. T1 - Production of three certified reference materials for the sulfur content in gasoline (petrol) JF - Energy and Fuels N2 - Directive 2003/17/EC of the European Parliament and the European Council stipulates that petrol (gasoline) with a total sulfur content below 10 mg kg-1 must be available in all European Union member states by 2009. Three certified reference materials were produced in support of this directive in a joint effort of the members of the European Reference Materials Initiative (ERM). Two of the materials were made from commercial petrol, while the third one was prepared from a blend of commercial petrols. Relative between-ampule heterogeneity of the materials was quantified and found to be below 2.5%. Potential degradation during storage and dispatch was quantified, and shelf lives based on these values were set. The three materials were characterized by three institutes using different variants of isotope-dilution mass spectrometry. The results from the three institutes were combined, and the final uncertainties of the respective sulfur mass fractions were estimated including contributions from heterogeneity, stability, and characterization. The following mass fractions were derived: ERM-EF211, 48.8 ± 1.7 mg kg-1; ERM-EF212, 20.2 ± 1.1 mg kg-1; and ERM-EF213, 9.1 ± 0.8 mg kg-1. KW - CRM KW - IDMS KW - ERM PY - 2007 DO - https://doi.org/10.1021/ef070155t SN - 0887-0624 SN - 1520-5029 VL - 21 IS - 4 SP - 2240 EP - 2244 PB - ACS Publ. CY - Washington, DC AN - OPUS4-16371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Roadmap for purity determination N2 - A Roadmap for the purity Determination of pure metallic elements is presented. The roadmap distinguishes between different approaches for the purity determination and list theindividual steps for each Approach which are necessary to successfully apply These approaches. T2 - CCQM IAWG Meeting CY - Daejeon, South Korea DA - 04.10.2016 KW - Traceability KW - Purity determination PY - 2016 AN - OPUS4-38590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Jährling, R. A1 - Noordmann, J. A1 - Pape, C. A1 - Röhker, K. A1 - Vogl, Jochen A1 - Manzano, J. V. L. A1 - Kozlowski, W. A1 - Caciano de Siena, R. A1 - Marques Rodrigues, J. A1 - Galli, A. H. A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Lee, J. H. A1 - Min, H.-S. A1 - Chingbo, C. A1 - Naijie, S. A1 - Qian, W. A1 - Ren, T. A1 - Jun, W. A1 - Tangpaisarnkul, N. A1 - Suzuki, T. A1 - Nonose, N. A1 - Mester, Z. A1 - Yang, L. A1 - Pagliano, E. A1 - Greenberg, P. A1 - Mariassy, M. A1 - Näykki, T. A1 - Cankur, O. A1 - Coskun, F. G. A1 - Ari, B. A1 - Can, S. Z. T1 - CCQM-K122 "Anionic impurities and lead in salt solutions" JF - Metrologia N2 - The determination of the mass fractions of bromide, sulfate, and lead as well as the isotopic composition of the lead (expressed as the molar mass and the amount fractions of all four stable lead isotopes) in an aqueous solution of sodium chloride with a mass fraction of 0.15 g/g was the subject of this comparison. Even though the mass fractions ranged from 3 μg/g (bromide) to 50 ng/g (lead), almost all results reported agreed with the according KCRVs. KW - Absolute isotope ratio KW - Lead isotope ratios KW - Metrology KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1A/08012 VL - 57 IS - 1A SP - 8012 PB - IOP Science AN - OPUS4-51156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope Ratio Measurements and Certification of iCRMs at BAM N2 - A short overview on isotope ratio measurements at BAM and related CRM activities is given. The current isotope CRM range offered by BAM and future iCRM projects are presented. T2 - CCQM IRWG Meeting CY - Sevres, France DA - 24.04.2023 KW - Absolute isotope ratio KW - Reference material KW - Metrology KW - Traceability PY - 2023 AN - OPUS4-57399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - IRWG strategy update N2 - An update of the IRWG strategy for the period 2023-2030 is given. The status and the futuere work of the task group on quantities, symbols and units is discussed. The present status of IRWG comparisons is shown and the need for specific key comparisons is discussed. T2 - CCQM IRWG Meeting CY - Sevres, France DA - 24.04.2023 KW - Isotope ratio KW - Traceability KW - Metrology PY - 2023 AN - OPUS4-57400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, K. A1 - Weber, M. A1 - Menneken, M. A1 - Kral, A. G. A1 - Mertz-Kraus, R. A1 - Geisler, T. A1 - Vogl, Jochen A1 - Tütken, T. T1 - Diagenetic stability of non-traditional stable isotope systems (Ca, Sr, Mg, Zn) in teeth – An in-vitro alteration experiment of biogenic apatite in isotopically enriched tracer solution JF - Chemical Geology N2 - Stable isotope ratios and trace element concentrations of fossil bones and teeth are important geochemical proxies for the reconstruction of diet and past environment in archaeology and palaeontology. However, since diagenesis can significantly alter primary diet-related isotope signatures and elemental compositions, it is important to understand and quantify alteration processes. Here, we present the results of in-vitro Alteration experiments of dental tissues from a modern African elephant molar reacted in aqueous solutions at 30 °C and 90 °C for 4 to 63 days. Dental cubes with ≈ 3 mm edge length, comprising both enamel and dentin, were placed into 2 mL of acidic aqueous solution enriched in different isotopes (25Mg, 44Ca, 67Zn, 86Sr, initial pH 1). Element and isotope distribution profiles across the reacted cubes were measured with LA-(MC-)ICP-MS and EMPA, while potential effects on the bioapatite crystal structure were characterised by Raman spectroscopy. In all experiments isotope ratios measured by LA-(MC-)ICP-MS revealed an alteration of the enamel in the outer ≈ 200–300 μm. In contrast, dentin was fully altered (≈ 1.4 mm) after one week at 90 °C while the alteration did not exceed a depth of 150–200 μm during the 30 °C experiments. Then, the tracer solution started also to penetrate through the enamel-dentin junction into the innermost enamel, however, leaving the central part of the enamel unaltered, even after three months. The Raman spectra suggest an initial demineralisation in the acidic environment while organic matter (i.e. collagen) is still preserved. In the 90 °C experiment, Raman spectra of the v1 PO4) band of the dentin shift over time towards synthetic hydroxylapatite patterns and the Ca (and Sr) concentrations in the respective solutions decrease. This indicates precipitation of newly formed apatite. Isotope and element concentration profiles across the dental tissues reveal different exchange mechanisms for different isotope systems. Magnesium is leached from enamel and dentin, while Zn is incorporated into the apatite crystal structure. However, the distribution of both elements is not affected in the innermost enamel where their concentrations do not change over the whole duration of the experiments. We found no correlation of reaction depth in the cubes and experimental duration, which might be caused by natural variability of the dental material already at the beginning of the experiment. Our alteration experiments in a closed system at high temperatures ≤90 °C and low initial pH demonstrate that at least the central part of mm-thick mammalian enamel apatite seems to be resistant against alteration preserving its pristine bioapatite mineral structure as well as its in-vivo elemental and isotopic composition. The experiments assess diagenetic alteration in a novel multi-proxy approach using in-situ analyses in high spatial resolution. It is demonstrated that the isotopes of Ca, Sr, Zn and Mg in the dentin are prone for diagenetic alteration, while enamel is more resistant against alteration and could be used for dietary and physiological reconstructions in fossil teeth. KW - Bioapatite KW - Isotopes KW - Raman spectroscopy KW - Diagenesis KW - LA-(MC-)ICP-MS KW - EPMA PY - 2021 DO - https://doi.org/10.1016/j.chemgeo.2021.120196 VL - 572 SP - 120196 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - del Rocío Arvizu Torres, M. A1 - Manzano, J.V.L. A1 - Rodrigues, J.M. A1 - de Sena, R.C. A1 - Yim, Y.-H. A1 - Heo, S.W. A1 - Zhou, T. A1 - Turk, G.C. A1 - Winchester, M. A1 - Yu, L. L. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Tunc, M. A1 - Can, S.Z. T1 - Final report of the key comparison CCQM-K72: Purity of zinc with respect to six defined metallic analytes JF - Metrologia N2 - KEY COMPARISON High purity elements can serve as a realization of the SI unit amount of substance for the specific element. Solutions prepared from high purity metals by applying gravimetric preparation and the concept of molar mass are used as 'calibration' solutions in many fields of analytical chemistry and provide the metrological basis in elemental analysis. Since ideal purity does not exist for real materials, the actual purity of the high purity material must be known with a specified uncertainty. As required uncertainties around 10-4 relative on the purity statement are not accessible in almost all cases by a direct measurement of the element in itself, the indirect approach is followed, where all elements excepting the matrix element itself are measured and their sum is subtracted from the value for ideal purity, which is 1 kg/kg. It was the aim of this comparison to demonstrate the capability of national metrology institutes and designated institutes to determine the purity of pure elements. In order to limit the effort within this comparison, only six metallic impurities (Ag, Al, Cd, Cr, Ni, Tl) in the low mg/kg range are considered in a zinc matrix. It has to be underlined here that the task was to measure the purity of zinc based on the determination of six analytes. The task is not trace analysis of specific analytes in zinc. This subtle distinction defines different measurands. The sample, pure Zn, was cut in pieces of cubic geometry for wet chemical analysis or of pin geometry for GDMS analysis and was sent to the participants. The comparison was run under the auspices of the Inorganic analysis Working Group (IAWG) of the CCQM and was piloted by the BAM Federal Institute for Materials Research and Testing, Berlin, Germany. The majority of the participants applied ICP-MS techniques and only two participants used additionally atomic absorption spectrometry. GDMS was used only by one participant. The observed spreads for the measurement results reported by the participants were significantly lower than those of the preceding study CCQM-P107 and were well below the target uncertainty of 30% relative. As a consequence, comparability within the participating laboratories is demonstrated to be established. The individual measurement results, mean values and medians derived were in all cases very consistent with the reference values obtained by IDMS and so the accuracy of the measurement results for the participating laboratories is as well demonstrated to be established. Especially with the results of CCQM-P62 and CCQM-P107 in mind, the outcome of CCQM-K72 can be considered as a big step forward in the community. CCQM is aware of the difference between a characterization based on only six analytes and a complete characterization. Therefore, the pilot study CCQM-P149 has been initiated and already started, which focuses on the fit-for-purpose approaches for the purity determination of metals (here: zinc) to be used as primary standards in elemental analysis. Another follow-up in the form of a pilot study on non-metal impurities is mandatory, because non-metal impurities such as oxygen, nitrogen and sulfur often make up the largest contributions. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - CCQM KW - Metrology KW - Purity PY - 2014 DO - https://doi.org/10.1088/0026-1394/51/1A/08008 SN - 0026-1394 SN - 1681-7575 VL - 51 IS - 1A (Tech.Suppl. 2014) SP - 08008, 1 EP - 40 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosner, Martin A1 - Vogl, Jochen T1 - Three new offset Delta11B isotope reference materials for environmental boron isotope studies T2 - International symposium on isotopes in hydrology, marine ecosystems and climate change studies (Proceedings) N2 - The isotopic composition of boron is a well established tool in various areas of Science and industry. Boron isotope compositions are typically reported as 5nB values which indicate the isotopic difference of a sample relative to the isotope reference material NIST SRM 951. A significant drawback of all of the available boron isotope reference materials is that none of them covers a natural boron isotope composition apart from NIST SRM 951. To fill this gap of required 5UB reference materials three new solution boric acid reference materials were produced, which cover 6096o of the natural boron isotope Variation (-20 to 40%oo B) of about 100%o. The new reference materials are certified for their B values and are commercially available through European Reference Materials® (http://wwrv.enn-cmi.org). The newly produced and certified boron isotope reference materials will allow straightforward method Validation and quality control of boron isotope data. T2 - International symposium on isotopes in hydrology, marine ecosystems and climate change studies CY - Monaco DA - 27.03.2011 KW - Boron KW - Boron isotope variations KW - Delta-scale KW - Stable isotopes KW - Isotope reference materials KW - Delta reference materials KW - Metrology in chemistry PY - 2011 SN - 978-92-0-135610-9 VL - 2 SP - 377 EP - 380 AN - OPUS4-31858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang T1 - Isotope reference materials for present and future isotope research JF - Mineralogical magazine N2 - The variation of isotope abundance ratios is increasingly used to unravell natural and technical questions. In the past the investigation and interpretation of such variations was the field of a limited number of experts. With new upcoming techniques and research topics in the last decades, such as provenance and authenticity of food, the number of published isotope data strongly increased. The development of inductively coupled plasma mass spectrometers (ICPMS) from an instrument for simple quantitative analysis to highly sophisticated isotope abundance ratio machines influenced this process significantly. While in former times only experts in mass spectrometry were able to produce reproducible isotope data, nowadays many laboratories, never been in touch with mass spectrometry before, produce isotope data with an ICPMS. Especially for such user isotope reference materials (IRM) are indispensible to enable a reliable method validation. The fast development and the broad availability of ICPMS also lead to an expansion of the classical research areas and new elements are under investigation. Here all users require IRM to correct for mass fractionation or mass discrimination or at least to enable isotope data related to a common accepted basis. Despite this growing interest suitable IRM are still lacking for a number of isotope systems such as magnesium. PY - 2011 SN - 1471-8022 VL - 75 IS - 3 SP - 2098 PB - Mineralogical Society of Great Britain and Ireland CY - London AN - OPUS4-32683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brand, W.A. A1 - Coplen, T.B. A1 - Vogl, Jochen A1 - Rosner, M. A1 - Prohaska, T. T1 - Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical report) JF - Pure and applied chemistry KW - Delta notation KW - Delta values KW - Geochemistry KW - Inductively coupled plasma (ICP) mass spectrometry KW - Isotopes KW - IUPAC Inorganic chemistry division KW - Mass spectrometry KW - Reference materials PY - 2014 DO - https://doi.org/10.1515/PAC-2013-1023 SN - 0033-4545 SN - 1365-3075 VL - 86 IS - 3 SP - 425 EP - 467 PB - Union CY - Research Triangle Park, NC AN - OPUS4-30322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -