TY - JOUR A1 - Matschat, Ralf A1 - Richter, Silke A1 - Vogl, Jochen A1 - Kipphardt, Heinrich T1 - On the way to SI traceable primary transfer standards for amount of substance measurements in inorganic chemical analysis JF - Analytical and bioanalytical chemistry N2 - During its 25 years of existence, the Inorganic Analysis Working Group of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM IAWG) has achieved much in establishing comparability of measurement results. Impressive work has been done on comparison exercises related to real-world problems in fields such as ecology, food, or health. In more recent attempts, measurements and comparisons were focused on calibration solutions which are the basis of most inorganic chemical measurements. This contribution deals with the question of how to achieve full and transparent SI traceability for the values carried by such solutions. Within this framework, the use of classical primary methods (CPMs) is compared to the use of a primary difference method (PDM). PDM is a method with a dual character, namely a metrological method with a primary character, based on the bundling of many measurement methods for individual impurities, which lead to materials with certified content of the main component. As in classical methods, where small corrections for interferences are accepted, in PDM, many small corrections are bundled. In contrast to classical methods, the PDM is universally applicable to all elements in principle. Both approaches can be used to certify the purity (expressed as mass fraction of the main element) of a high-purity material. This is where the metrological need of National Metrology Institutes (NMIs) for analytical methods meet the challenges of analytical methods. In terms of methods, glow discharge mass spectrometry (GMDS) with sufficient uncertainties for sufficiently small impurity contents is particularly noteworthy for the certification of primary transfer standards (PTS), and isotope dilution mass spectrometry (IDMS), which particularly benefits from PTS (back-spikes) with small uncertainties, is particularly noteworthy for the application. The corresponding relative uncertainty which can be achieved using the PDM is very low (< 10−4). Acting as PTS, they represent the link between the material aspect of the primary calibration solutions and the immaterial world of the International System of Units (SI). The underlying concepts are discussed, the current status of implementation is summarised, and a roadmap of the necessary future activities in inorganic analytical chemistry is sketched. It has to be noted that smaller measurement uncertainties of the purity of high-purity materials not only have a positive effect on chemical measurements, but also trigger new developments and findings in other disciplines such as thermometry or materials science. KW - Inorganic chemical analysis KW - Primary transfer standards (PTSs) KW - Traceability KW - Classical primary measurement method (CPM) KW - Primary difference measurement method (PDM) KW - Metrology in chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572743 DO - https://doi.org/10.1007/s00216-023-04660-4 SN - 1618-2642 SN - 1618-2650 VL - 415 SP - 3057 EP - 3071 PB - Springer CY - Berlin AN - OPUS4-57274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Morcillo Garcia-Morato, Dalia A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - Determination of lithium in human serum by isotope dilution atomic absorption spectrometry JF - Analytical and bioanalytical chemistry N2 - The therapeutic dose of lithium (Li) compounds, which are widely used for the treatment of psychiatric and hematologic disorders, is close to its toxic level; therefore, drug monitoring protocols are mandatory. Herein, we propose a fast, simple, and low-cost analytical procedure for the traceable determination of Li concentration in human serum, based on the monitoring of the Li isotope dilution through the partially resolved isotope shift in its electronic transition around 670.80 nm using a commercially available high-resolution continuum source graphite furnace atomic absorption spectrometer. With this technique, serum samples only require acidic digestion before analysis. The procedure requires three measurements—an enriched 6Li spike, a mixture of a certified standard solution and spike, and a mixture of the sample and spike with a nominal 7Li/6Li ratio of 0.82. Lanthanum has been used as an internal spectral standard for wavelength correction. The spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Both the spectral constants and the correlation between isotope ratio and relative band intensity have been experimentally obtained using commercially available materials enriched with Li isotopes. The Li characteristic mass (mc) obtained corresponds to 0.6 pg. The procedure has been validated using five human serum certified reference materials. The results are metrologically comparable and compatible to the certified values. The measurement uncertainties are comparable to those obtained by the more complex and expensive technique, isotope dilution mass spectrometry. KW - Lithium KW - Human serum KW - Isotope dilution KW - Atomic absorption spectrometry KW - High-resolution continuum source graphite furnace atomic absorption spectrometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532446 DO - https://doi.org/10.1007/s00216-021-03636-6 VL - 414 IS - 1 SP - 251 EP - 256 PB - Springer CY - Berlin AN - OPUS4-53244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Nowak, S. A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-Resolution Atomic Absorption Spectrometry Combined With Machine Learning Data Processing for Isotope Amount Ratio Analysis of Lithium JF - Analytical Chemistry N2 - An alternative method for lithium isotope amount ratio analysis based on a combination of high-resolution atomic absorption spectrometry and spectral data analysis by machine learning (ML) is proposed herein. It is based on the well-known isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by the state-of-the-art high-resolution continuum source graphite furnace atomic absorption spectrometry. For isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions, ranging from 0.06 to 0.99 mol mol–1, previously determined by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). The calibration ML model was validated with two certified reference materials (LSVEC and IRMM-016). The procedure was applied toward the isotope amount ratio determination of a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. The results of these determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9 to 6.2‰. This precision was sufficient to resolve naturally occurring variations, as demonstrated for samples ranging from approximately −3 to +15‰. To assess its suitability to technical applications, the NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification. The results obtained were metrologically compatible with each other. KW - Lithium KW - Isotope KW - Machine learning KW - Algorithms KW - Reference material KW - AAS KW - Atomic Absorption Spectrometry PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c00206 SN - 1520-6882 VL - 93 IS - 29 SP - 10022 EP - 10030 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-53028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -