TY - JOUR A1 - Ostermann, Markus A1 - Kettisch, P. A1 - Becker, Dorit A1 - Vogl, Jochen T1 - Measurements of sulfur in oil using pressurised wet digestion technique in open vessels and isotope dilution mass spectrometry KW - Wet digestion KW - Open vessel digestion KW - Sulfur in oil KW - Reference materials KW - TIMS KW - IDMS PY - 2003 UR - http://www.springerlink.com/content/b7alk8lgly2v/?p=6237db8a9c28481d87e7b017e6474b73&pi=88 SN - 1618-2642 SN - 1618-2650 VL - 377 IS - 4 SP - 779 EP - 783 PB - Springer CY - Berlin AN - OPUS4-2738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel T1 - Development of reference procedures for the quantification of toxic metals and S in plastics N2 - The quantitative analysis of toxic metals in plastics is very important for different sectors of industry and daily life. Many routine procedures have been established based on X-ray fluorescence or inductively coupled plasma atomic emission spectrometry. However, all of them require suitable reference materials to calibrate or validate. These reference materials ideally are being certified by reference procedures. The development of such reference procedures for sulfur and the four toxic elements cadmium, chromium, mercury and lead in plastics is described here. The procedures are based on double isotope dilution mass spectrometry including analyte–matrix separation. The applied mass spectrometric techniques are thermal ionization mass spectrometry as well as inductively coupled plasma mass spectrometry. Memory effects of mercury and dissolution of chromium(III) oxide have been considered especially. The expanded uncertainties have been improved from the percent range down to the per mill range during the development of the procedure from the early analysis of BCR-680/681 to the recent analysis of CCQM-P106. With the fully developed procedures expanded uncertainties (k = 2) between 0.1 and 0.4% for cadmium, chromium, lead and sulfur and around 1% for mercury can be achieved. The so developed procedures have been successfully applied to the certification of reference materials as well as to intercomparisons organized by CCQM. KW - ICPMS KW - TIMS KW - Reference materials KW - IDMS PY - 2010 DO - https://doi.org/10.1039/c0ja00034e SN - 0267-9477 SN - 1364-5544 VL - 25 IS - 10 SP - 1633 EP - 1642 PB - Royal Society of Chemistry CY - London AN - OPUS4-22044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hioki, A. A1 - Nonose, N. A1 - Liandi, M. A1 - Jingbo, C. A1 - Liuxing, F. A1 - Chao, W. A1 - Cho, K.H. A1 - Suh, J.K. A1 - Min, H.S. A1 - Lim, Y. A1 - Recknagel, Sebastian A1 - Koenig, Maren A1 - Vogl, Jochen A1 - De Sena, R.C. A1 - Dos Reis, L.A. A1 - Borinsky, M. A1 - Puelles, M. A1 - Hatamleh, N. A1 - Acosta, O. A1 - Turk, G. A1 - Rabb, S. A1 - Sturgeon, R. A1 - Methven, B. A1 - Rienitz, O. A1 - Jaehrling, R. A1 - Konopelko, L.A. A1 - Kustikov, Y.A. A1 - Kozyreva, S.B. A1 - Korzh, A.A. T1 - Final report of the key coamparison CCQM-K88: Determination of lead in lead-free solder containing silver and copper N2 - The CCQM-K88 key comparison was organized by the Inorganic Analysis Working Group of CCQM to test the abilities of the national metrology institutes to measure the mass fraction of lead in lead-free solder containing silver and copper. National Metrology Institute of Japan (NMIJ), National Institute of Metrology of China (NIM) and Korea Research Institute of Standards and Science (KRISS) acted as the coordinating laboratories. The participants used different measurement methods, though most of them used inductively coupled plasma optical emission spectrometry (ICP-OES) or isotope-dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). Accounting for relative expanded uncertainty, comparability of measurement results was successfully demonstrated by the participating NMIs for the measurement of the mass fraction of lead in lead-free solder at the level of 200 mg/kg. It is expected that metals at mass fractions greater than approximately 100 mg/kg in lead-free solder containing silver and copper can be determined by each participant using the same technique(s) employed for this key comparison to achieve similar uncertainties mentioned in the present report. KW - CCQM KW - Metrology KW - IDMS PY - 2013 DO - https://doi.org/10.1088/0026-1394/50/1A/08002 SN - 0026-1394 SN - 1681-7575 VL - 50 IS - 08002, 1A (Technical Supplement 2013) SP - 1 EP - 19 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Quétel, C. A1 - Ostermann, Markus A1 - Papadakis, I. A1 - Van Nevel, L. A1 - Taylor, P.D.P. T1 - Contribution to the certification of B, Cd, Mg, Pb, Rb, Sr, and U in a natural water sample for the International Measurement Evaluation Programme Round 9 (IMEP-9) using ID-ICP-MS N2 - The present paper describes the contribution of the Institute for Reference Materials and Measurements to the certification of B, Cd, Mg, Pb, Rb, Sr, and U amount contents in a natural water sample, in round 9 of the International Measurement Evaluation Programme (IMEP-9). The analytical procedure to establish the reference values for B, Cd, Mg, Pb, Rb, Sr, and U amount contents was based on isotope dilution inductively coupled plasma-mass spectrometry used as a primary method of measurement. Applying this procedure reference values, traceable to the SI, were obtained for the natural water sample of IMEP-9. For each of the certified amount contents presented here a total uncertainty budget was calculated using the method of propagation of uncertainties according to ISO and EURACHEM guidelines. The measurement procedures, as well as the uncertainty calculations are described for all seven elements mentioned above. In order to keep the whole certification process transparent and so traceable, the preparations of various reagents and materials as well as the sample treatment and blending, the measurements themselves, and finally the data treatment are described in detail. Explanations focus on Pb as a representative example. The total uncertainties (relative) obtained were less than 2% for all investigated elements at amount contents in the pmol/kg up to the high 7mol/kg range, corresponding to low 7g/kg and mg/kg levels. KW - IMEP-9 KW - ID-ICP-MS KW - IDMS KW - Uncertainty budget KW - Certification PY - 2000 DO - https://doi.org/10.1007/s007690000145 SN - 0949-1775 SN - 1432-0517 VL - 5 SP - 272 EP - 279 PB - Springer CY - Berlin AN - OPUS4-7216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudek, Gabriele A1 - Alber, D. A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel A1 - Vogl, Jochen A1 - Görner, Wolf T1 - Determination of the beta- branching ratio of 64Cu by mass spectrometric investigations of the decay products in neutron transmuted copper N2 - The ?- branching ratio of 64Cu was determined by investigating the resulting decay products in copper doped by neutron transmutation. The numbers of 64Zn and 64Ni atoms were analyzed using isotope dilution analysis combined with thermal ionization mass spectrometry. A ?- branching ratio of (38.06±0.30)% was obtained, which agrees with the study of Kawada (Appl. Radiat. Isot. 37 (1) (1986) 7) to a higher accuracy. However, our result differs from the value cited in the NUDAT database of (39.0±0.3)%. KW - NTD KW - Copper KW - Zinc KW - Nickel KW - Branching ratio KW - Cu-64 KW - TIMS KW - IDMS KW - Isotope dilution KW - Thermal ionization mass spectrometry KW - Neutron transmutation doping PY - 2002 DO - https://doi.org/10.1016/S0969-8043(01)00180-4 SN - 0883-2889 SN - 0969-8043 N1 - Geburtsname von Dudek, Gabriele: Wermann, G. - Birth name of Dudek, Gabriele: Wermann, G. VL - 56 SP - 145 EP - 151 PB - Elsevier CY - Amsterdam AN - OPUS4-7221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pritzkow, Wolfgang A1 - Vogl, Jochen A1 - Köppen, Robert A1 - Ostermann, Markus T1 - Determination of sulfur isotope abundance ratios for SI-traceable low sulfur concentration measurements in fossil fuels by ID-TIMS N2 - The present work describes the development of an existing TIMS procedure to a reference procedure for low sulfur concentration measurements in fossil fuels. With this enhanced procedure SI-traceable sulfur mass fractions below 10 mg kg-1 can be obtained. The achieved detection limit is approximately 0.2 mg kg-1. The procedure was validated by certified reference materials. The procedure was already applied to candidate reference materials and to samples analysed within projects of the “Comité Consultatif pour la Quantité de Matière – CCQM”. Additionally the influence of the isotopic composition on the results and its corresponding uncertainty was studied. Reference data published in the literature on the isotopic composition of sulfur were assessed. KW - TIMS KW - IDMS KW - Low sulfur KW - Fossil fuel KW - Reference procedure PY - 2005 DO - https://doi.org/10.1016/j.ijms.2004.10.024 SN - 0168-1176 SN - 0020-7381 SN - 1387-3806 SN - 1873-2798 VL - 242 SP - 309 EP - 318 PB - Elsevier CY - Amsterdam AN - OPUS4-7222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Vogl, Jochen A1 - Klingbeil, P. A1 - Pritzkow, W. A1 - Riebe, Gundel A1 - Wermann, G. A1 - Turner, P. A1 - Wortel, N. A1 - Woittiez, J. T1 - HIIRM final report N2 - Accurate analytical results have become more and more an absolute essential tool for further progresses in technology and science. Precision however, often used in this context as a quality criterion for analytical methods, is not a replacement for accuracy in any way. Therefore, analytical procedures are necessary, which will generate reliable and accurate results and can be used for evaluation of other analytical procedures and certification of reference materials (RM). Especially the certification of reference materials for the amount content of trace elements requires highly accurate results with a small combined uncertainty. The best example for an analytical procedure having this capability is undoubtedly Isotope Dilution Mass Spectrometry, for inorganic as well as for organic applications. Applied on Thermal Ionization Mass Spectrometry (TIMS) isotope dilution provides results of highest quality and proven high accuracy especially in the field of RM certifications for more than 30 years. The major drawback of this approach often is the necessity for a complex chemical separation step. A major advantage of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is the potential to cope with a simplified or an on-line-carried-out sample preparation. A key requirement of isotope dilution analysis however is the accurate and precise determination of isotope ratios, because of its limiting factor for the accuracy and the total uncertainty of the result. Very precise isotope ratios can be determined in combination with a detection system that is capable of simultaneous detection of different isotopes, a so-called multi-collector system. The objective of the presented project is to evaluate the advantages of such a multi-collector ICP-MS for the application of IDMS in the field of trace elemental analysis in reference materials. The focus is on the development of simple and fast procedures for isotope ratio measurements in general and IDMS analysis in particular. Furthermore, it is an objective to develop and evaluate on-line spiking procedures. One of the first conclusions, which had a severe impact on the HIIRM project, arose during the early days of the project. Currently most certification experiments are accomplished by certification campaign based on a variety of participants’ results. The sample preparation, sending, analyzing and data evaluation however require lot of resources and the process may take a long time. An alternative way is given by using fewer participants with methods of higher metrological quality. For elemental amount contents such a method undoubtedly is isotope dilution analysis and multi-collector ICP-MS offers the necessary precision and matrix robustness and ruggedness as said above. Therefore, a multiple collector ICP-MS was manufactured as part of the project instead of the originally planned high-resolution instrument. Due to the novelty of the multicollector ICP-MS instrument, a lot of additional fundamental research became necessary. Especially interferences needed further attention. Fortunately, the IsoProbe is additionally equipped with a high-resolution option and with a brand new collison cell. The high-resolution option however can only be used to identify interferences but cannot be used to quantify them. On the other hand, the use of the collision cell proved to be a vital tool to overcome interferences. This is especially true because high resolution would have reduced the available sensitivity by a factor of ~100. Applying the collision cell technology the high sensitivity was maintained whilst most interferences were eliminated. However finding the right parameters of operation for the collision cell became a huge part of the method development process. A variety of gases like argon, helium, hydrogen, deuterium, nitrogen, krypton and xenon were tested for their suitability. Especially the tests accomplished for iron determinations revealed that carefully selected parameters have an incredible influence on the quality of the final results. Nonetheless collision cell technology will undoubtedly be widely used for newer ICP-MS instrumentation and contribute to eliminate wrong analytical values caused by interferences. The enhanced sensitivity of the instrument revealed also problems not detectable by other means. The control of contaminations seems to be one of the major analytical challenges in the future. Sector field based ICP-MS will give the user an opportunity to trace sources of contamination back to their origin and eliminate them. Even lower limits of detection will be the result as well as an enhanced reliability for analysts dealing with higher amount contents. The analyst will also benefit in controlling blank levels when the method of isotopically spiked procedure blanks is used as demonstrated in this project. Another main part of the project was the validation of the developed procedures. The first validation step was successfully accomplished by applying these procedures on the standard solutions provided by NRG. The main part of this validation however consisted of the evaluation of the fundamental parameters of the isotope dilution process and related measurements. This approach turned out to be superior compaired to the first step as a highly reliable uncertainty calculation can be easily performed. The best reputation and acceptance of the methods can however only be accomplished by participating in certification campaigns or in interlaboratory comparisons on highest metrological level. The results of the participations in general were brilliant. Not only the results but also the obtained realistic uncertainties were of superior quality. Direct comparisons at BAM with the results obtained by a multicollector TIMS applying the same calculation schemes showed the benefits of using multicollector ICP-MS. The main benefits of ICP-MS were identified, of which the first one is the enhanced precision of the isotope ratio measurement. For a variety of elements the values obtained by multicollector ICP-MS are even more precise than the ones obtainable by multicollector TIMS. The second important advantage identified was the simplified sample preparation. The laborious and time consuming analyte-matrix-separation step as necessary for TIMS measurements can either be omitted or at least be drastically reduced. Therefore, the advantages regarding time and enhanced sample throughput will result in further spread of ICP-MS in general and multicollector ICP-MS in particular. The third major part in terms of the method development process was mainly focused on developing an online isotope dilution system. The volumetric instead of the gravimetric IDMS approach proved difficult, if the high demands necessary for RM definition measurements are to be fulfilled. The major obstacle in this case is the missing stability and precision in terms of mass flow. Consequently, the initial development failed as the system made up of two piezoelectric droplet injectors was unable to reach the required stability as well as precision. The thereupon-created system consisting of two HPLC pumps proved to be far more valuable regarding automation and particularly the quantification of transient signals. Nevertheless, such a system will probably be rarely used in certification campaigns, as the gain of time is too small compared to the loss of reliability. However, this system proved most valuable in terms of species-specific elemental analysis as preliminary investigations showed. In this context this system will be suitable for certification measurements, as the major uncertainty contributions derive from sampling, sample treatment and species distribution and as moreover all availabel methods demonstrate far beyond. During the whole project, one of the main concerns regarding the multicollector ICP-MS instrument were software issues caused by the early development state of the original control programs. A lot of effort was necessary to accomplish the necessary data manipulations externally. The development of a new software suite by Micromass for the HIIRM project has solved this issue almost completely. With the new software suite and the validated parameters of measurement a step forward for institutes dealing with reference material certifications was achieved. Future certifications campaigns for minor elemental contents in different matrices should be performed by a small number of participants from highly qualified institutes. These institutes should apply very reliable methods of measurement like the ones developed in the HIIRM project. Many resources may be saved that way while the outcome of the certifications may easily be improved. ICP-MC-MS has the potential to be an important method in this context. Stable isotope dilution analysis in combination with a multi-detector ICP-MS, equipped with a hexapole collision cell for the suppression of important spectral interferences and for enhanced sensitivity, proved to be an advanced method of elemental analysis with a high potential for matrix independent measurements. Since ICP mass spectrometers of this type have only recently been introduced, no systematic evaluation of the capabilities of this specific application of the ICP-IDMS method has yet been made. KW - interferences KW - collision cell KW - ICPMS KW - IDMS PY - 2002 SP - 1 EP - 166 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linsinger, T. A1 - Andrzejuk, W. A1 - Bau, A. A1 - Charoud-Got, J. A1 - De VOs, P. A1 - Emteborg, H. A1 - Hearn, R. A1 - Lamberty, A. A1 - Oostra, A. A1 - Pritzkow, Wolfgang A1 - Quétel, C. A1 - Roebben, G. A1 - Tresl, I. A1 - Vogl, Jochen A1 - Wood, S. T1 - Production of three certified reference materials for the sulfur content in gasoline (petrol) N2 - Directive 2003/17/EC of the European Parliament and the European Council stipulates that petrol (gasoline) with a total sulfur content below 10 mg kg-1 must be available in all European Union member states by 2009. Three certified reference materials were produced in support of this directive in a joint effort of the members of the European Reference Materials Initiative (ERM). Two of the materials were made from commercial petrol, while the third one was prepared from a blend of commercial petrols. Relative between-ampule heterogeneity of the materials was quantified and found to be below 2.5%. Potential degradation during storage and dispatch was quantified, and shelf lives based on these values were set. The three materials were characterized by three institutes using different variants of isotope-dilution mass spectrometry. The results from the three institutes were combined, and the final uncertainties of the respective sulfur mass fractions were estimated including contributions from heterogeneity, stability, and characterization. The following mass fractions were derived: ERM-EF211, 48.8 ± 1.7 mg kg-1; ERM-EF212, 20.2 ± 1.1 mg kg-1; and ERM-EF213, 9.1 ± 0.8 mg kg-1. KW - CRM KW - IDMS KW - ERM PY - 2007 DO - https://doi.org/10.1021/ef070155t SN - 0887-0624 SN - 1520-5029 VL - 21 IS - 4 SP - 2240 EP - 2244 PB - ACS Publ. CY - Washington, DC AN - OPUS4-16371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Rienitz, Olaf A1 - Noordmann, Janine A1 - Meyer, Christian T1 - Platin- und Palladium-Analytik mit ID-ICPMS N2 - Zertifizierung von Pt und Pd-Spikes und deren Anwendung auf die Quantifizierung von Pd und Pt in Kfz-Emissionen T2 - 15. Edelmetallforum CY - Freising, Germany DA - 14.03.2016 KW - PGE KW - Emissionen KW - IDMS KW - ICPMS PY - 2016 AN - OPUS4-35572 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Liesegang, D. A1 - Ostermann, Markus A1 - Diemer, J. A1 - Berglund, M. A1 - Quétel, C. A1 - Taylor, P. A1 - Heumann, K. T1 - Producing SI-traceable reference values for Cd, Cr and Pb amount contents in polyethylene samples from the Polymer Elemental Reference Material (PERM) project using isotope dilution mass spectrometry N2 - The present paper describes the certification of the amount content of Cd, Cr and Pb in two different polyethylene materials within the third phase of the Polyethylene Elemental Reference Material (PERM) project. The analytical procedure to establish the reference values for Cd, Cr and Pb amount contents in these materials is based on isotope dilution mass spectrometry used as a primary method of measurement. Cd and Pb were measured with inductively coupled plasma-mass spectrometry and Cr with positive thermal ionization-mass spectrometry. The decomposition of the polymer matrix was carried out using a high pressure asher. Reference values for amount content, traceable to the SI-system, have been obtained for these three elements in both of the polyethylene samples of PERM. For each of the certified amount content values an uncertainty budget was calculated using the method of propagation of uncertainties according to ISO and EURACHEM guidelines. The measurement procedures, as well as the uncertainty calculations, are described for all three elements. In order to keep the whole certification process as transparent as possible, the preparations of various reagents and materials as well as the sample treatment and blending are described in detail. The mass spectrometry measurements and the data treatment are also explained carefully. The various sources of uncertainty present in the procedure are displayed in the uncertainty budgets. The obtained combined uncertainties for the amount content values were less than 2% relative (k=1) for all investigated elements. The amount contents were in the ?mol/kg range, corresponding to mg/kg levels. KW - PERM KW - ICP-MS KW - PTI-MS KW - IDMS KW - Uncertainty budget KW - Certification KW - Polyethylene PY - 2000 DO - https://doi.org/10.1007/s007690000146 SN - 0949-1775 SN - 1432-0517 VL - 5 SP - 314 EP - 324 PB - Springer CY - Berlin AN - OPUS4-7217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -