TY - CONF A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, P. A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition - Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. T2 - CITAC Best Paper Award Ceremony CY - Online meeting DA - 21.06.2022 KW - Isotope dilution mass spectrometry KW - Standard addition KW - ICP-MS KW - Blank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2022 AN - OPUS4-55032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition—Elemental Analysis in Complex Samples JF - Molecules N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. KW - Isotope dilution mass spectrometry KW - tandard addition KW - ICP-MS KW - lank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526376 DO - https://doi.org/10.3390/molecules26092649 VL - 26 IS - 9 SP - 2649 PB - MDPI CY - Basel AN - OPUS4-52637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klingbeil, Patrick A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel A1 - Müller, J. T1 - Comparative studies on the certification of reference materials by ICPMS and TIMS using isotope dilution procedures JF - Analytical chemistry N2 - A comparison of different isotope dilution mass spectrometric (IDMS) procedures using inductively coupled plasma mass spectrometry (ICPMS) and thermal ionization mass spectrometry (TIMS) was carried out to examine the degree of equivalence between the used procedures in terms of requirements for reference material certification. The comparison was based on the measurement results and their uncertainties. The sample used in this study is a pure zinc metal to be certified by the Bureau Communie de Référence (BCR) for amount contents of different trace elements. This study focuses on cadmium and thallium. The TIMS values contributed to the certified values. To guarantee identical conditions as far as possible for the procedures under investigation, the samples were split into subsamples after spiking and digestion took place. Thus, every IDMS procedure started with an identical set of samples. In total, four different IDMS procedures and one external calibration procedure using internal standardization as an example of routine analysis were applied. The IDMS procedures divide in a group with and a group without trace/matrix separation. Multicollector TIMS (TI-MC-MS) and multicollector ICPMS (ICP-MC-MS) were used in combination with trace/matrix separation, whereas quadrupole ICPMS (ICP-QMS) and ICP-MC-MS were also applied to nonseparated samples. All IDMS results agree well within their combined uncertainties, while some results from the external calibration procedure do not. IDMS results obtained by ICPMS without separation are comparable to those obtained by TI-MC-MS with separation regarding precision and accuracy. The smallest uncertainties were achieved using ICP-MC-MS in combination with trace/matrix separation. KW - ICP-MS KW - TIMS KW - IDMS KW - multi-collector KW - uncertainty budget KW - Certification KW - reference material PY - 2001 DO - https://doi.org/10.1021/ac001278c SN - 0003-2700 SN - 1520-6882 VL - 73 IS - 8 SP - 1881 EP - 1888 PB - American Chemical Society CY - Washington, DC AN - OPUS4-909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Labarraque, G. A1 - Oster, C. A1 - Fisicaro, P. A1 - Meyer, Christian A1 - Vogl, Jochen A1 - Noordmann, J. A1 - Rienitz, O. A1 - Riccobono, F. A1 - Donet, S. T1 - Reference measurement procedures for the quatification of platinum-group elements (PGEs) from automotive exhaust emissions JF - International journal of environmental analytical chemistry N2 - The major source of the anthropogenic platinum group element (PGE) emission is attributed to the use of catalytic converters in automobiles. This paper describes the work performed by three National Metrology Institutes (Laboratoire national de métrologie et d’essais, by the Physikalisch-technische bundesanstalt, Bundesanatalt für materialforschung und prûfung), in the framework of the Joint Research Project 'PartEmission' under the European Metrology Research Program. An analytical procedure based on a cationic exchange protocol and the isotope dilution or standard addition using an Inductived Coupled Plasma Mass Spectrometer, ICP-MS, for the quantification of the elements Pt, Pd and Rh from automotive exhaust emissions is described. Results obtained on a road dust certified reference (BCR 723) material showed a good agreement with the certified values, at ng/g levels, and relative expanded uncertainties within the range of 7–10%. Analysis of filters impacted with automotive exhaust particle emissions (from a diesel engine) showed the amount of collected PGE at levels of 10–1000 pg/filter. Their quantifications followed the developed analytical protocol that had been carried out with relative expanded uncertainties in the range of a few per cent up to 20% per filter. Nevertheless, a lack of homogeneity between the filters was observed, making the comparison between the project partners difficult in the sake of the validation of their analytical procedures on real samples. KW - Automotive pollution KW - Catalytic converters KW - Platinum group elements (PGE) KW - ICP-MS KW - Isobaric interferences KW - Cationic exchange KW - Reference measurement procedures KW - Double isotope dilution KW - Palladium KW - Platinum KW - Automotive exhaust emissions KW - IDMS PY - 2015 DO - https://doi.org/10.1080/03067319.2015.1058931 SN - 0306-7319 SN - 1029-0397 SN - 0092-9085 VL - 95 IS - 9 SP - 777 EP - 789 PB - Gordon and Breach CY - New York, NY AN - OPUS4-34015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nelms, S. A1 - Quétel, C. A1 - Prohaska, T. A1 - Vogl, Jochen A1 - Taylor, P.D.P. T1 - Evaluation of detector dead time calculation models for ICP-MS JF - Journal of analytical atomic spectrometry KW - ICP-MS KW - Dead time KW - Uncertainty PY - 2001 DO - https://doi.org/10.1039/b007913h SN - 0267-9477 SN - 1364-5544 VL - 16 IS - 4 SP - 333 EP - 338 PB - Royal Society of Chemistry CY - London AN - OPUS4-7219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pritzkow, Wolfgang A1 - Vogl, Jochen A1 - Berger, Achim A1 - Ecker, Klaus A1 - Grötzschel, R. A1 - Klingbeil, Patrick A1 - Persson, L. A1 - Riebe, Gundel A1 - Wätjen, U. T1 - Contribution of ICP-IDMS to the certification of antimony implanted in a silicon wafer - comparison with RBS and INAA results JF - Fresenius' journal of analytical chemistry N2 - A thin-layer reference material for surface and near-surface analytical methods was produced and certified. The surface density of the implanted Sb layer was determined by Rutherford backscattering spectrometry (RBS), instrumental neutron activation analysis (INAA), and inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) equipped with a multi-collector. The isotopic abundances of Sb (121Sb and 123Sb) were determined by multi-collector ICP-MS and INAA. ICP-IDMS measurements are discussed in detail in this paper. All methods produced values traceable to the SI and are accompanied by a complete uncertainty budget. The homogeneity of the material was measured with RBS. From these measurements the standard uncertainty due to possible inhomogeneities was estimated to be less than 0.78% for fractions of the area increments down to 0.75 mm2 in size. Excellent agreement between the results of the three different methods was found. For the surface density of implanted Sb atoms the unweighted mean value of the means of four data sets is 4.8121016 cm-2 with an expanded uncertainty (coverage factor k=2) of 0.0921016 cm-2. For the isotope amount ratio R (121Sb/123Sb) the unweighted mean value of the means of two data sets is 1.435 with an expanded uncertainty (coverage factor k=2) of 0.006. KW - ICP-MS KW - IDMS KW - Reference material KW - Surface analysis PY - 2001 DO - https://doi.org/10.1007/s002160100987 SN - 0937-0633 VL - 371 SP - 867 EP - 873 PB - Springer CY - Berlin AN - OPUS4-7220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quétel, C. A1 - Vogl, Jochen A1 - Prohaska, T. A1 - Nelms, S. A1 - Taylor, P.D.P. A1 - De Bièvre, P. T1 - Comparative performance study of ICP mass spectrometers by means of U "isotopic measurements" JF - Fresenius' journal of analytical chemistry N2 - The performance of four commercially available ICPMS instruments of three different types was compared by means of uranium "isotopic measurements". Examined were two quadrupole sector (different generation, different manufacturer), one single detector double focusing magnetic sector and one multiple collector double focusing magnetic sector instruments. The same samples of the IRMM-072 series were used under routine conditions to measure the 233U/235U and the 233U/238U ratios which, in these samples, vary over almost three orders of magnitude from ~ 1 to ~ 2 · 10-3. Within expanded (k = 2) uncertainties, good agreement was observed between the certified values and the data internally corrected for mass-discrimination effects. The magnitude of the evaluated uncertainties was different for each type of instrument. With the multiple collector instrument, expanded uncertainties varied from - 0.04% to- 0.24% for the 233U/235U ratio, and from - 0.08% to - 0.27% for the 233U/238U ratio. They were ~ 1 to 5 times larger with the single detector magnetic sector instrument, and ~ 10 to 25 times larger with both quadrupole sector instruments. With the multiple collector instrument, repeatability of the measurements seemed to be limited by the difficulty of correcting properly for instrumental background, whereas with the single detector magnetic sector instrument the counting statistics was the only limitation (on smallest ratios). Apparent mass-discrimination was clearly found to be larger but more reproducible (and hence easier to correct for) in the case of magnetic sector instruments than for both quadrupole sector instruments. If space charge effects were the main source of mass-discrimination for all instruments, these results are in contradiction with the hypothesis of the size of mass-discrimination decreasing with the acceleration voltage. With the single detector magnetic sector instrument in particular (when operated by changing the ion energy only), our results pointed at more than only one major source of mass-discrimination, with variable size depending on the ratios measured. KW - ICP-MS KW - Isotope ratio KW - Uranium PY - 2000 DO - https://doi.org/10.1007/s002160000499 SN - 0937-0633 VL - 368 SP - 148 EP - 155 PB - Springer CY - Berlin AN - OPUS4-7218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sargent, M A1 - Goenaga-Infante, H A1 - Inagaki, K A1 - Ma, L A1 - Meija, J A1 - Pramann, A A1 - Rienitz, O A1 - Sturgeon, R A1 - Vogl, Jochen A1 - Wang, J A1 - Yang, L T1 - The role of ICP-MS in inorganic chemical metrology JF - Metrologia N2 - ICP-MS has played a key role in inorganic chemical metrology for 25 years, from the 1993 CIPM feasibility study which led to establishment of the CCQM. Since that time, the Inorganic Analysis Working Group of the CCQM has organised 56 international comparisons involving measurements by ICP-MS and, in a recent comparison, 16 different national institutes submitted their results using the technique. Metrological applications of ICP-MS currently address an enormous range of measurements using a wide variety of instrumentation, calibration strategies and methodologies. This review provides an overview of the ICP-MS field with an emphasis on developments which are of particular relevance to chemical metrology. Examples from CCQM comparisons and the services available from the participants are used to illustrate how the capability and scope of ICP-MS methods have expanded far beyond the expectations of 1993. This is due in part to the research and development Programmes of the national institutes which participate in the CCQM. They have played a key role in advancing new instrumentation and applications for elemental analysis, isotope dilution mass spectrometry, determination of isotopic ratio or composition, and speciation of organometallic compounds. These developments are continuing today, as demonstrated by work in new fields such as heteroatom quantitation of proteins, characterisation and counting of nanoparticles using spICP-MS, and LA-ICP-MS analysis of solid materials. KW - CCQM KW - Metrology KW - Interlaboratory comparison KW - ICP-MS KW - Mass spectrometry KW - Hyphenated KW - Isotope ratio PY - 2019 DO - https://doi.org/10.1088/1681-7575/ab0eac VL - 56 IS - 3 SP - 034005 PB - IOP Publishing AN - OPUS4-47929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stratulat, C. A1 - Ginghina, R. E. A1 - Bratu, A. E. A1 - Isleyen, A. A1 - Tunc, M. A1 - Hafner-Vuk, K. A1 - Frey, A. M. A1 - Kjeldsen, H. A1 - Vogl, Jochen T1 - Development- and Validation-Improved Metrological Methods for the Determination of Inorganic Impurities and Ash Content from Biofuels JF - energies N2 - In this study, five laboratories, namely, BRML (Romania), TUBITAK UME (Turkey), IMBIH (Bosnia and Herzegovina), BAM (Germany), and DTI (Denmark), developed and validated analytical procedures by ICP-MS, ICP-OES, MWP-AES, WD-XRF, and ID-MS for the determination of inorganic impurities in solid and liquid biofuels, established the budget of uncertainties, and developed the method for determining the amount of ash in the measurement range 0–1.2% with absolute repeatability less than 0.1% and absolute reproducibility of 0.2% (according to EN ISO 18122). In order to create homogeneous certified reference materials, improved methodologies for the measurement and characterization of solid and liquid biofuels were developed. Thus, information regarding the precision, accuracy, and bias of the method, and identifying the factors that intervened in the measurement of uncertainty were experimentally determined, supplementing the information from the existing standards in the field. KW - Development KW - Validate method KW - Biodiesel KW - ICP-MS KW - ICP-OES KW - MW-AES KW - WD-XRF KW - ID-MS KW - Inorganic impurities KW - Ash content KW - Wood chips PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578743 DO - https://doi.org/10.3390/en16135221 VL - 16 IS - 13 SP - 1 EP - 14 PB - MDPI AN - OPUS4-57874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Liesegang, D. A1 - Ostermann, Markus A1 - Diemer, J. A1 - Berglund, M. A1 - Quétel, C. A1 - Taylor, P. A1 - Heumann, K. T1 - Producing SI-traceable reference values for Cd, Cr and Pb amount contents in polyethylene samples from the Polymer Elemental Reference Material (PERM) project using isotope dilution mass spectrometry JF - Accreditation and quality assurance N2 - The present paper describes the certification of the amount content of Cd, Cr and Pb in two different polyethylene materials within the third phase of the Polyethylene Elemental Reference Material (PERM) project. The analytical procedure to establish the reference values for Cd, Cr and Pb amount contents in these materials is based on isotope dilution mass spectrometry used as a primary method of measurement. Cd and Pb were measured with inductively coupled plasma-mass spectrometry and Cr with positive thermal ionization-mass spectrometry. The decomposition of the polymer matrix was carried out using a high pressure asher. Reference values for amount content, traceable to the SI-system, have been obtained for these three elements in both of the polyethylene samples of PERM. For each of the certified amount content values an uncertainty budget was calculated using the method of propagation of uncertainties according to ISO and EURACHEM guidelines. The measurement procedures, as well as the uncertainty calculations, are described for all three elements. In order to keep the whole certification process as transparent as possible, the preparations of various reagents and materials as well as the sample treatment and blending are described in detail. The mass spectrometry measurements and the data treatment are also explained carefully. The various sources of uncertainty present in the procedure are displayed in the uncertainty budgets. The obtained combined uncertainties for the amount content values were less than 2% relative (k=1) for all investigated elements. The amount contents were in the ?mol/kg range, corresponding to mg/kg levels. KW - PERM KW - ICP-MS KW - PTI-MS KW - IDMS KW - Uncertainty budget KW - Certification KW - Polyethylene PY - 2000 DO - https://doi.org/10.1007/s007690000146 SN - 0949-1775 SN - 1432-0517 VL - 5 SP - 314 EP - 324 PB - Springer CY - Berlin AN - OPUS4-7217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -