TY - JOUR A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Chinta, P.K. A1 - Kreutzbruck, Marc A1 - Rethmeier, Michael A1 - Prager, Jens T1 - Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model: Numerical and experimental comparison N2 - Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic non destructive testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials, austenitic welds and dissimilar welds. In this contribution we present an adapted 2D ray tracing model for evaluating ultrasonic wave fields quantitatively in inhomogeneous anisotropic materials. Inhomogeneity in the anisotropic material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The ray tracing model results are validated quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occurring in the ultrasonic non destructive testing of anisotropic materials. Finally, the quantitative comparison of ray tracing model results with experiments on 32 mm thick austenitic weld material and 62 mm thick austenitic cladded material is discussed. KW - Ultrasonic field KW - 2D ray tracing KW - Directivity KW - Anisotropic austenitic weld KW - Non-destructive testing PY - 2013 DO - https://doi.org/10.1016/j.ultras.2012.07.006 VL - 53 IS - 2 SP - 396 EP - 411 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-27324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schnur, C. A1 - Goodarzi, P. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens A1 - Tschöke, K. A1 - Moll, J. A1 - Schütze, A. A1 - Schneider, T. T1 - Towards interpretable machine learning for automated damage detection based on ultrasonic guided waves N2 - Data-driven analysis for damage assessment has a large potential in structural health monitoring (SHM) systems, where sensors are permanently attached to the structure, enabling continuous and frequent measurements. In this contribution, we propose a machine learning (ML) approach for automated damage detection, based on an ML toolbox for industrial condition monitoring. The toolbox combines multiple complementary algorithms for feature extraction and selection and automatically chooses the best combination of methods for the dataset at hand. Here, this toolbox is applied to a guided wave-based SHM dataset for varying temperatures and damage locations, which is freely available on the Open Guided Waves platform. A classification rate of 96.2% is achieved, demonstrating reliable and automated damage detection. Moreover, the ability of the ML model to identify a damaged structure at untrained damage locations and temperatures is demonstrated. KW - Composite structures KW - Structural health monitoring KW - Carbon fibre-reinforced plastic KW - Interpretable machine learning KW - Automotive industry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542060 DO - https://doi.org/10.3390/s22010406 SN - 1424-8220 VL - 22 IS - 1 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Harrer, Andrea A1 - Daschewski, Maxim A1 - Prager, Jens A1 - Kreutzbruck, Marc A1 - Guderian, Matthias A1 - Meyer-Plath, Asmus T1 - Thermoacoustic generation of airborne ultrasound using carbon materials at the micro- and nanoscale N2 - The generation of airborne ultrasound is presented using the thermoacoustic principle applied to carbon materials at the micro- and nanoscale. Such materials are shown to be capable of emitting ultrasound when being fed by an alternating current. We tested the acoustic performance of carbon fibers, bucky papers and electrospun polyacrylonitrile-derived carbon nanofibers and determined the sound pressure for frequencies up to 350 kHz. A comparison between the experimental results and the theoretical prediction showed remarkable agreement for frequencies up to 150 kHz. Beyond 150 kHz, we found slight deviations from the expected sound pressure dependence on the square root of the frequency. KW - Thermoacoustic KW - Airborne ultrasound transducer KW - Sound pressure PY - 2012 DO - https://doi.org/10.3233/JAE-2012-1440 SN - 1383-5416 SN - 0925-2096 VL - 39 IS - 1-4 SP - 35 EP - 41 PB - IOS Press CY - Amsterdam, The Netherlands AN - OPUS4-26737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gravenkamp, Hauke A1 - Prager, Jens A1 - Saputra, A. A. A1 - Song, C. T1 - The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method N2 - The scaled boundary finite element method is applied to the simulation of Lamb waves for ultrasonic testing applications. With this method, the general elastodynamic problem is solved, while only the boundary of the domain under consideration has to be discretized. The reflection of the fundamental Lamb wave modes from cracks of different geometry in a steel plate is modeled. A test problem is compared with commercial finite element software, showing the efficiency and convergence of the scaled boundary finite element method. A special formulation of this method is utilized to calculate dispersion relations for plate structures. For the discretization of the boundary, higher-order elements are employed to improve the efficiency of the simulations. The simplicity of mesh generation of a cracked plate for a scaled boundary finite element analysis is illustrated. KW - Lamb waves KW - Scaled boundary finite element method KW - Dispersion KW - Structural dynamics KW - Cracks PY - 2012 DO - https://doi.org/10.1121/1.4740478 SN - 0001-4966 SN - 1520-8524 VL - 132 IS - 3 SP - 1358 EP - 1367 PB - AIP CY - Melville, NY, USA AN - OPUS4-27115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gravenkamp, Hauke A1 - Man, H. A1 - Song, C. A1 - Prager, Jens T1 - The computation of dispersion relations for three-dimensional elastic waveguides using the scaled boundary finite element method N2 - In this paper, a numerical approach for the computation of dispersion relations for three-dimensional waveguides with arbitrary cross-section is proposed. The formulation is based on the Scaled Boundary Finite Element Method (SBFEM). It is an extension of the approach previously derived for plate structures. It is shown that the wavenumbers of guided waves in a waveguide can be obtained as the eigenvalues of the Z matrix, which is well known in the SBFEM. The Hamiltonian properties of this matrix are utilized to derive an efficient way to compute the group velocities of propagating waves as eigenvalue derivatives. The cross-section of the waveguide is discretized using higher-order spectral elements. It is discussed in detail how symmetry axes can be utilized to reduce computational costs. In order to sort the solutions at different frequencies, a mode-tracking algorithm is proposed, based on the Padé expansion. KW - Guided waves KW - Simulation KW - Dispersion KW - Scaled boundary finite element method PY - 2013 DO - https://doi.org/10.1016/j.jsv.2013.02.007 SN - 0022-460X SN - 1095-8568 VL - 332 IS - 15 SP - 3756 EP - 3771 PB - Academic Press CY - London AN - OPUS4-28837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prager, Jens A1 - Höhne, Christian A1 - Rahman, Mehbub-Ur T1 - Synthetic aperture focusing technique for detecting transverse cracks in austenitic and dissimilar welds N2 - The inspection of austenitic and dissimilar welds using ultrasound demands for sophisticated testing techniques. The application of reconstruction methods like the Synthetic Aperture Focusing Technique (SAFT) on the measurement results provides an appropriate approach for defect characterization and sizing. Nevertheless, the reconstruction algorithm has to consider the aniso-tropic wave propagation inside the inhomogeneous weld material. In recent years the detection of transverse cracks has become increasingly important for ensuring the structural integrity of pipes in the primary circuit of nuclear power plants or longitudinally welded, cladded pipes. However, relia-ble inspection techniques are hardly available. In this particular case, it is expected that the compar-atively long propagation path of the ultrasonic wave field inside the inhomogeneous weld material enhances the effect of anisotropy and influences the accuracy and the signal-to-noise-ratio of the reconstruction result. In this contribution we suggest an advanced ultrasonic testing technique for detecting and sizing of transversal cracks in austenitic and dissimilar welds. The method applies a SAFT reconstruction algorithm considering the anisotropy and the inhomogeneity. A V-arrangement of the transducers in pitch-catch technique is chosen to avoid a direct coupling on the weld face. The reconstruction algo-rithm is based on an extended 3-dimensional weld model and uses a ray-tracing approach for de-termining the wave propagation paths. Along with the reconstruction algorithm the transducer set-up and experimental results of different specimens with artificial transverse flaws are presented. The availability of the proposed method for crack sizing is assessed in comparison to conventional testing techniques. T2 - DAMAS 2013 - 10th International conference on damage assessment of structures CY - Dublin, Ireland DA - 08.07.2013 KW - Anisotropic Material KW - Damage Assessment KW - Synthetic Aperture Focusing Technique KW - SAFT KW - Ultrasonic Non-Destructive Evaluation PY - 2013 DO - https://doi.org/10.4028/www.scientific.net/KEM.569-570.1036 SN - 1013-9826 VL - 569-570 SP - 1036 EP - 1043 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-28864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Structural health monitoring of composite pressure vessels using guided ultrasonic waves N2 - Composite pressure vessels are important components in the storage of gases under high pressure. Among others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre-reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material and thus reduce the remaining lifetime of the tested component. Therefore, a truly non-destructive structural health monitoring (SHM) system would not only ensure a safer usage and extended lifetime, but also remove the necessity for periodic inspection and the testing of pressure vessels. The authors propose the use of guided ultrasonic waves, which have the potential to detect the main damage types, such as cracking in the metal liner, fibre breaks and composite matrix delamination. For the design of such an SHM system, multimodal ultrasonic wave propagation and defect-mode interaction must be fully understood. In this paper, simulation results obtained by means of finite element modelling (FEM) are presented. Based on the findings, suggestions are made regarding appropriate wave modes and their interaction with different flaw types, as well as the necessary excitation and suitable sensor configurations. Finally, a first approach for a reliable SHM system for composite pressure vessels is suggested. T2 - First World Congress on Condition Monitoring (WCCM) CY - London, UK DA - 13.06.2017 KW - Composite materials KW - Pressure tanks KW - Condition monitoring PY - 2018 DO - https://doi.org/10.1784/insi.2018.60.3.139 SN - 1354-2575 VL - 60 IS - 3 SP - 139 EP - 144 PB - The British Institute of Non-Destructive Testing CY - Northampton, UK AN - OPUS4-44605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhne, Christian A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Boehm, Rainer A1 - Prager, Jens T1 - SAFT imaging of transverse cracks in austenitic and dissimilar welds N2 - Up to now there is no sufficient technique to detect transverse cracks in austenitic and dissimilar welds which recently are of increasing interest in the integrity surveillance of nuclear power plants as well as in quality control of longitudinally welded pipes. Weld inspection by interpretation of single A-scans will lead to erroneous results due to effects caused by anisotropy and in worst case might leave flaws undetected. Therefore, imaging techniques such as the synthetic aperture focusing technique (SAFT) should be used. If the SAFT algorithm is applied on data taken from austenitic welds, the inhomogeneous, anisotropic structure of these welds has to be taken into account in order to properly attribute amplitudes measured in A-scans to the corresponding coordinates in the region of interest. While this has been investigated in the past, all attempts so far were limited to the imaging of longitudinal cracks which requires a less complicated setup than the imaging of transverse cracks. In this paper we give an outline of our attempts to reconstruct images of transverse cracks in different welds. For this purpose a SAFT program based on ray tracing and a layered structure weld model derived from an empirical model of grain orientations in welds are used. The results of the image reconstruction on experimental data are shown and compared to images obtained by assuming an isotropic homogeneous model. Root reflection and crack tip echo are clearly visible which allows an estimation of size and position of the crack with good accuracy. KW - SAFT KW - Austenitic welds KW - Dissimilar welds KW - Transverse cracks KW - Ray tracing PY - 2013 DO - https://doi.org/10.1007/s10921-012-0159-3 SN - 0195-9298 SN - 1573-4862 VL - 32 IS - 1 SP - 51 EP - 66 PB - Plenum Press CY - New York, NY AN - OPUS4-27754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prager, Jens A1 - Kitze, Jessica A1 - Acheroy, Cécile A1 - Brackrock, Daniel A1 - Brekow, Gerhard A1 - Kreutzbruck, Marc T1 - SAFT and TOFD - A comparative study of two defect sizing techniques on a reactor pressure vessel mock-up N2 - Defect sizing is required for a quantitative assessment of the quality and reliability of safety relevant components and materials using ultrasonic non-destructive testing. The SAFT (Synthetic Aperture Focussing Technique) and the TOFD technique (Time Of Flight Diffraction) are such promising sizing candidates, extracting more information from the raw ultrasound echo data and the corresponding crack tip response. In this work the phased array technique is used to inspect a clad mock-up model of a pressure vessel section. The full scale model contains artificial test reflectors which are located in the weld and in the cladding region as well. The defects—representing typical flaws at a very early stage—are analysed with different frequencies, beam angles and directions of incidence. For the reconstruction of reflector indications a SAFT algorithm is applied to the phased array measurement results. Additionally the reflectors are analysed by means of the TOFD technique, using different beam angles at the same time. Both analysis methods are performed using different directions of incidence considering the complex cladding structure underneath the inner surface of the mock-up model. A direct comparison of the SAFT and TOFD techniques shows that, besides the clarity of the results, the detection and sizing capabilities of SAFT are far better. KW - Ultrasonic inspection KW - Phased array probe KW - Synthetic aperture focussing technique KW - Time of flight diffraction method PY - 2013 DO - https://doi.org/10.1007/s10921-012-0153-9 SN - 0195-9298 SN - 1573-4862 VL - 32 IS - 1 SP - 1 EP - 13 PB - Plenum Press CY - New York, NY AN - OPUS4-29277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daschewski, Maxim A1 - Kreutzbruck, Marc A1 - Prager, Jens A1 - Dohse, Elmar A1 - Gaal, Mate A1 - Harrer, Andrea T1 - Resonanzfreie Messung und Anregung von Ultraschall N2 - In diesem Beitrag präsentieren wir innovative Methoden für die breitbandige und resonanzfreie Messung und Anregung von Ultraschall. Das Messverfahren verwendet eine Kunststofffolie und ein Laser-Vibrometer als breitbandigen und resonanzfreien Empfänger. Im Allgemeinen ermöglicht dieses Verfahren eine präzise Messung der Schallschnelle und des Schalldruckes in beliebigen, für das Laserlicht transparenten Flüssigkeiten und Gasen mit bekannter Dichte und Schallgeschwindigkeit. Das resonanzfreie Senden von Ultraschall basiert auf einem elektro-thermo-akustischen Wandlerprinzip und ermöglicht, im Gegensatz zu herkömmlichen Ultraschallwandlern, die Erzeugung von beliebig geformten akustischen Signalen ohne Resonanzen und ohne Nachschwingen. N2 - In this contribution we present innovative methods for broadband and resonance-free sensing and emitting of ultrasound. The sensing method uses a polyethylene foil and a laser vibrometer as a broadband and resonance-free sound receiver. In general, this method enables absolute measurement of sound particle velocity and sound pressure in arbitrary, laser beam transparent liquids and gases with known density and sound velocity. The resonance-free emitting method is based on the electro-thermo-acoustic principle and enables, contrary to conventional ultrasound transducers, generation of arbitrary shaped acoustic signals without resonances and post-oscillations. KW - Ultraschall KW - Übertragungsfunktion KW - Charakterisierung von Ultraschallmesssystemen KW - Thermo-akustische Ultraschallemitter KW - Ultrasound KW - Transfer function KW - Characterization of ultrasonic measurement systems KW - Thermo-acoustic ultrasound emitter PY - 2015 DO - https://doi.org/10.1515/teme-2014-0020 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 82 IS - 3 SP - 156 EP - 166 PB - Oldenbourg CY - München AN - OPUS4-32733 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -