TY - JOUR A1 - Podshivalov, L. A1 - Wirth, Cynthia A1 - Zocca, Andrea A1 - Günster, Jens A1 - Bar-Yoseph, P. A1 - Fischer, A. T1 - Design, analysis and additive manufacturing of porous structures for biocompatible micro-scale scaffolds N2 - Advancements in the fields of biocompatible materials, manufacturing processes, computational methods and medicine have led to the emergence of a new field: micro-scale scaffolds for bone replacement and regeneration. Yet most such scaffolds produced today are characterized by very basic geometry, and their microstructure differs greatly from that of the actual tissue they are intended to replace. In this paper, we propose a novel approach for generating micro-scale scaffolds based on processing actual micro-CT images and then reconstructing a highly accurate geometrical model. This model is manufactured by means of a state-of-the-art 3D additive manufacturing process from biocompatible materials. At the micro-scale level, these scaffolds are very similar to the original tissue, thus interfacing better with the surrounding tissue and facilitating more efficient rehabilitation for the patient. Moreover, the approach facilitates the design and manufacture of patient-specific scaffolds which can copy patients’ exact structural and mechanical characteristics, taking into account their physical condition and medical history. By means of multi-resolution volumetric modeling methods, scaffold porosity can also be adapted according to specific mechanical requirements. The process of designing and manufacturing micro-scale scaffolds involves five major stages: (a) building a volumetric multi-resolution model from micro-CT images; (b) generation of surface geometric model in STL format; (c) additive manufacturing of the scaffold; (d) scaffold shape verification relative to the geometric design; and (e) verification of mechanical properties through finite element analysis. In this research, all the proposed stages of the approach were tested. The input included micro-CT scans of porous ceramic structure, which is quite similar to commercial porous scaffolds. The results show that the proposed method is feasible for design and manufacture of micro-scale scaffolds. KW - Micro-scale bone scaffolds KW - Additive manufacturing KW - Multiscale FEA KW - Ceramics KW - Multiresolution modeling PY - 2013 U6 - https://doi.org/10.1016/j.procir.2013.01.049 SN - 2212-8271 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 5 SP - 247 EP - 252 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-28003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Riechers, Birte A1 - Zocca, Andrea A1 - Rosalie, Julian A1 - Maaß, Robert A1 - Sturm, Heinz A1 - Günster, Jens T1 - Entering a new dimension in powder processing for advanced ceramics shaping N2 - Filigree structures can be manufactured via two-photon-polymerization (2PP) operating in the regime of non-linear light absorption. For the first time it is possible to apply this technique to the powder processing of ceramic structures with a feature size in the range of the critical defect size responsible for brittle fracture and, thus, affecting fracture toughness of high-performance ceramics. In this way, tailoring of advanced properties can be achieved already in the shaping process. Traditionally, 2PP relies on transparent polymerizable resins, which is diametrically opposed to the usually completely opaque ceramic resins and slurries. Here we present a transparent and photocurable suspension of nanoparticles (resin) with very high mass fractions of yttria-stabilized zirconia particles (YSZ). Due to the extremely well dispersed nanoparticles, scattering of light can be effectively suppressed at the process-relevant wavelength of 800 nm. Sintered ceramic structures with a resolution of down to 500 nm were obtained. Even at reduced densities of 1 to 4 g/cm³, the resulting compressive strength with 4,5 GPa is equivalent or even exceeding bulk monolithic yttria stabilized zirconia. A ceramic metamaterial is born, where the mechanical properties of yttria stabilized zirconia are altered by changing geometrical parameters and gives access to a new class of ceramic materials. KW - Two-photon-polymerization KW - Ceramics KW - Powder processing KW - Transparency KW - Meta material KW - Yttria stabilized zirconia PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564598 SN - 1521-4095 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Léonard, Fabien A1 - Günster, Jens T1 - Laser-induced slip casting (LIS) – a new additive manufacturing process for dense ceramics demonstrated with Si3N4 N2 - Up to now, there exists a lack of methods for the additive manufacturing of voluminous ceramic parts with properties comparable to those of conventionally manufactured ones. A high density after sintering is needed to reach the superior properties of ceramic materials. We have developed a new additive manufacturing method, Laser-Induced Slip casting (LIS), to generate ceramic green bodies with high particle packing density and with virtually no restriction in the particle size of the feedstock, especially in terms of small particles. This is achieved by laser-induced local drying of slurries, with the process resembling many features of the well-established stereolithography, but without the excessive use of polymeric material. Thus, unlike the stereolithography process, the resulting green bodies can be processed like traditionally produced ceramic parts. This method allows large and dense additive-manufactured parts to be obtained from conventional water-based ceramic slurries. As an example, we will demonstrate the application of this novel technique with Si3N4. KW - Additive manufacturing KW - Ceramics PY - 2017 U6 - https://doi.org/10.4416/JCST2017-00091 SN - 2190-9385 VL - 8 IS - 4 SP - 531 EP - 540 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-43738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilbig, Janka A1 - Borges de Oliveira, F. A1 - Obaton, A.-F. A1 - Schwentenwein, M. A1 - Rübner, Katrin A1 - Günster, Jens T1 - Defect detection in additively manufactured lattices N2 - This paper investigates fast and inexpensive measurement methods for defect detection in parts produced by Additive Manufacturing (AM) with special focus on lattice parts made of ceramics. By Lithography-based Ceramic Manufacturing, parts were built both without defects and with typical defects intentionally introduced. These defects were investigated and confirmed by industrial X-ray Computed Tomography. Alternative inexpensive methods were applied afterwards on the parts such as weighing, volume determination by Archimedes method and gas permeability measurement. The results showed, that defects resulting in around 20% of change in volume and mass could be separated from parts free of defects by determination of mass or volume. Minor defects were not detectable as they were in the range of process-related fluctuations. Permeability measurement did not allow to safely identify parts with defects. The measurement methods investigated can be easily integrated in AM process chains to support quality control. KW - Additive manufacturing KW - Quality assurance KW - Defect detection KW - Lattices KW - Ceramics PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513547 VL - 3 SP - 100020 PB - Elsevier Ltd. AN - OPUS4-51354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elsayed, H. A1 - Zocca, Andrea A1 - Bernardo, E. A1 - Wirth, Cynthia A1 - Günster, Jens A1 - Colombo, P. T1 - Development of bioactive silicate-based glass-ceramics from preceramic polymer and filler N2 - 2014AbstractWollastonite/apatite glass-ceramics have been successfully prepared by a novel approach, consisting of the heat treatment of a silicone resinembedding micro-sized CaCO3particles, that act as reactive fillers, and bioactive glass powder in the SiO2–CaO–P2O5–K2O–Na2O–MgO–CaF2system. Zn-containing silicates, such as hardystonite (Ca2ZnSi2O7) and willemite (Zn2SiO4), were also developed either by directly mixing ZnOpowders with the glass, or by embedding them in the preceramic polymer, as additional fillers. KW - Additive manufacturing KW - Ceramics PY - 2015 U6 - https://doi.org/10.1016/j.jeurceramsoc.2014.09.020 SN - 0955-2219 SN - 1873-619X VL - 35 SP - 731 EP - 739 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-34955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Many of the most successful and precise additive manufacturing (AM) technologies are based on the deposition layer-by-layer of a flowable powder. Since the first pioneering work at the end of the 1980th many developments have been introduced, greatly extending the use of different materials, improving the physical properties of the components built and enhancing the accuracy of the process. Still very important issues remain nowadays, hampering a completely autonomous production of parts and even restricting the freedom of design by means of these technologies. One of the major issues is the low density and stability of the parts during the building process, which implies the need of support structures: The powder bed surrounding the part has an essential role, since it should support the structure during building, until it’s ready for removal. Moreover, the microstructure of the powder bed is a template for the microstructure of the part produced. In this context, the use of submicron ceramic powders is still a challenge. Three approaches for the stabilization and densification of powder beds will be presented: The Layerwise Slurry Deposition process LSD, the gas flow assisted powder deposition and the Laser Induced Slipcasting (LIS) of ceramic powder compacts. T2 - 43rd International Conference and Exposition on Advanced Ceramics and Composites (ICACC 2019) CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Ceramics KW - Additive Manufacturing PY - 2019 AN - OPUS4-49627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ginés-Palomares, J.-C. A1 - Fateri, M. A1 - Schubert, T. A1 - de Peindray d’Ambelle, L. A1 - Simon, Sebastian A1 - Gluth, Gregor A1 - Günster, Jens A1 - Zocca, Andrea T1 - Material aspects of sintering of EAC-1A lunar regolith simulant N2 - Future lunar exploration will be based on in-situ resource utilization (ISRU) techniques. The most abundant raw material on the Moon is lunar regolith, which, however, is very scarce on Earth, making the study of simulants a necessity. The objective of this study is to characterize and investigate the sintering behavior of EAC-1A lunar regolith simulant. The characterization of the simulant included the determination of the phase assemblage, characteristic temperatures determination and water content analysis. The results are discussed in the context of sintering experiments of EAC-1A simulant, which showed that the material can be sintered to a relative density close to 90%, but only within a very narrow range of temperatures (20–30 °C). Sintering experiments were performed for sieved and unsieved, as well as for dried and non-dried specimens of EAC-1A. In addition, an analysis of the densification and mechanical properties of the sintered specimens was done. The sintering experiments at different temperatures showed that the finest fraction of sieved simulant can reach a higher maximum sintering temperature, and consequently a higher densification and biaxial strength. The non-dried powder exhibited higher densification and biaxial strength after sintering compared to the dried specimen. This difference was explained with a higher green density of the non-dried powder during pressing, rather than due to an actual influence on the sintering mechanism. Nevertheless, drying the powder prior to sintering is important to avoid the overestimation of the strength of specimens to be fabricated on the Moon. KW - Lunar regolith KW - Ceramics KW - Microstructure KW - Sintering KW - Softening temperature PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-592668 SN - 2045-2322 VL - 13 SP - 1 EP - 14 PB - Springer Nature AN - OPUS4-59266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Binder Jetting of Advanced Ceramics N2 - The Binder Jetting BJ process is one of the most versatile additive manufacturing technologies in use. In this process a binder is locally jetted into a powder bed for the consolidation of a 3D structure, layer by layer. Basically, all materials which can be provided as a flowable powder and, thus, spreadable to a thin layer, can be processed. Metals, ceramics and polymers are processable, but also materials from nature, such as sand, wood sawdust and insect frass. Moreover, the BJ technology is adapted to large building volumes of some cubic meters easily. Besides these striking advantages, the manufacture of ceramic parts by BJ is still challenging, as the packing density of the powder bed is generally too low and the particle size of a flowable powder too large for a successful densification of printed parts in a subsequent sintering step to an advanced ceramic product. After an introduction of binder jetting in general and highlighting some examples, strategies for obtaining dense ceramic parts by BJ will be introduced. T2 - yCAM 2022 CY - Barcelona, Spain DA - 08.11.2022 KW - Additive Manufacturing KW - Ceramics PY - 2022 AN - OPUS4-59887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -