TY - JOUR A1 - Steinborn, Gabriele A1 - Tzschichholz, Grit A1 - Günster, Jens A1 - Keller, M.H. A1 - Manara, J. T1 - Porous TiO2-Y2O3 ceramics with specific infrared-optical properties N2 - The infrared-optical properties and particularly the emissivity of sintered ceramics depend on the material's bulk properties and structural properties such as porosity, pore size distribution and pore diameter. The infrared-optical properties can be varied across a wide range by specifically selecting the material's bulk and structural properties. A major concern of the present study is the development of a ceramic coating material with a total emissivity below 0.2 at a temperature of 800 °C. For this purpose, various samples of a TiO2-Y2O3 (TY) ceramic composite were produced with different properties. On variation in the Y2O3 content from 5 to 60 wt%, the porosity of the ceramic composites varies from 3 % to 47 % with the mean pore diameter lying in a range from 0.3 µm to 1.7 µm. The addition of graphitic pore builders increases the porosity up to 60 % and the mean pore diameter to a maximum of 15 µm. By optimizing the total porosity and the pore size of the TY ceramics, a total emissivity as low as 0.17 at 800 °C could be achieved. KW - Oxide ceramic KW - Porosity KW - Mean pore diameter KW - Infrared optical properties KW - Emissivity PY - 2011 U6 - https://doi.org/10.4416/JCST2011-00011 SN - 2190-9385 VL - 2 IS - 3 SP - 183 EP - 190 PB - Göller CY - Baden-Baden AN - OPUS4-24551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -