TY - JOUR A1 - Steinborn, Gabriele A1 - Tzschichholz, Grit A1 - Günster, Jens A1 - Keller, M.H. A1 - Manara, J. T1 - Porous TiO2-Y2O3 ceramics with specific infrared-optical properties JF - Journal of ceramic science and technology N2 - The infrared-optical properties and particularly the emissivity of sintered ceramics depend on the material's bulk properties and structural properties such as porosity, pore size distribution and pore diameter. The infrared-optical properties can be varied across a wide range by specifically selecting the material's bulk and structural properties. A major concern of the present study is the development of a ceramic coating material with a total emissivity below 0.2 at a temperature of 800 °C. For this purpose, various samples of a TiO2-Y2O3 (TY) ceramic composite were produced with different properties. On variation in the Y2O3 content from 5 to 60 wt%, the porosity of the ceramic composites varies from 3 % to 47 % with the mean pore diameter lying in a range from 0.3 µm to 1.7 µm. The addition of graphitic pore builders increases the porosity up to 60 % and the mean pore diameter to a maximum of 15 µm. By optimizing the total porosity and the pore size of the TY ceramics, a total emissivity as low as 0.17 at 800 °C could be achieved. KW - Oxide ceramic KW - Porosity KW - Mean pore diameter KW - Infrared optical properties KW - Emissivity PY - 2011 DO - https://doi.org/10.4416/JCST2011-00011 SN - 2190-9385 VL - 2 IS - 3 SP - 183 EP - 190 PB - Göller CY - Baden-Baden AN - OPUS4-24551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Xia, Y. A1 - Zuo, K.-h. A1 - Jiang, D. A1 - Günster, Jens A1 - Zeng, Y.-P. A1 - Heinrich, J.G. T1 - Porous Si3N4 ceramics prepared via partial nitridation and SHS JF - Journal of the European Ceramic Society N2 - Porous Si3N4 ceramics were prepared via partial nitridation and self-propagating high temperature synthesis (SHS) process. Raw Si and additive Y2O3 were mixed and molded under 10 MPa into a compact, the compact was partial nitridation at 1300 °C to form a porous Si/Si3N4, and then it was buried in a Si/Si3N4 bed for SHS to obtain porous Si3N4 with rod-like β-Si3N4 morphology. The processing combined the advantages of the nitridation of Si and SHS with low cost, low shrinkage and time saving. Porous Si3N4 with a porosity of 47%, a strength of 143 MPa were obtained by this method. KW - Si3N4 KW - Strength KW - Porosity PY - 2013 DO - https://doi.org/10.1016/j.jeurceramsoc.2012.08.033 SN - 0955-2219 SN - 1873-619X VL - 33 IS - 2 SP - 371 EP - 374 PB - Elsevier CY - Oxford AN - OPUS4-31282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Wirth, Cynthia A1 - Bernardo, E. A1 - Müller, Ralf A1 - Günster, Jens A1 - Colombo, P. T1 - LAS glass-ceramic scaffolds by three-dimensional printing JF - Journal of the European Ceramic Society N2 - Highly porous (>60% open porosity) glass–ceramic scaffolds with remarkable mechanical properties (compression strength of ~15 MPa) were produced by indirect 3D printing. Precursor glass powders were printed into 3D ordered structures and then heat treated to sinter and develop crystalline phases. The final glass–ceramic contained a β-spodumene solid solution together with a secondary phase of lithium disilicate. The precision of the printed geometry and the density of the struts in the scaffold depended on several processing parameters (e.g. powder size and flowability, layer thickness) and were improved by increasing the binder saturation and drying time. Two types of powders with different particle size distribution (PSD) and flowability were used. Powders with a larger PSD, could be processed within a wider range of printing parameters due to their good flowability; however, the printing precision and the struts density were lower compared to the scaffolds printed using the powder in a smaller average PSD. KW - Glass ceramics KW - Porosity KW - Shaping KW - Strength KW - Additive manufacturing PY - 2013 DO - https://doi.org/10.1016/j.jeurceramsoc.2012.12.012 SN - 0955-2219 SN - 1873-619X N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 33 IS - 9 SP - 1525 EP - 1533 PB - Elsevier CY - Oxford AN - OPUS4-28284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dombrowski, Felix A1 - Garcia Caso, P.W. A1 - Laschke, M.W. A1 - Klein, M. A1 - Günster, Jens A1 - Berger, Georg T1 - 3-D printed bioactive bone replacement scaffolds of alkaline substituted ortho-phosphates containing meta- and di-phosphates JF - Key engineering materials KW - Calcium alkaline phosphates KW - 3-D printing KW - Porosity KW - Compressive strength PY - 2013 DO - https://doi.org/10.4028/www.scientific.net/KEM.529-530.138 SN - 1013-9826 VL - 529-530 SP - 138 EP - 142 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-26972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -