TY - JOUR A1 - Richter, Janine A1 - Fettig, Ina A1 - Piechotta, Christian A1 - Philipp, Rosemarie A1 - Jakubowski, Norbert T1 - Tributylzinn in Gesamtwasserproben - Entwicklung eines Referenzverfahrens für die EU-Wasserrahmenrichtlinie PY - 2013 SN - 0016-3538 IS - 9 SP - 2 EP - 4 PB - GIT-Verlag CY - Darmstadt AN - OPUS4-29040 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Janine A1 - Lischka, Susanne A1 - Piechotta, Christian T1 - Analysis of arsenic species in fish after derivatization by GC-MS N2 - The derivatization of organoarsenic compounds by different reagents like thioglycolates or dithiols and the subsequent analysis by GC–MS as a molecular specific technique was investigated and described. The possible derivatization reagents methyl- and ethylthioglycolate (TGM and TGE), 1,3-propane- and 1,5-pentanedithiol (PDT and PeDT), which transfer the polar and nonvolatile analytes dimethylarsenate (DMA), monomethylarsonate (MMA), arsenite and arsenate into volatile compounds, were evaluated. The application for real samples like fish material was also studied. In addition the gas chromatographic separation and resolution was optimized and experiments were carried out to determine the highest derivatization rates. Derivatization reagents were evaluated in terms of quantity and stability of the formed chemical species. All derivatization products were characterized by mass spectrometry in order to identify the separated arsenic species. The most efficient conversion of DMA and MMA was observed by using ethylthioglycolate as derivatization agent. Finally, the derivatization procedure and the GC–MS-method were validated to determine linearity, precision, selectivity, analytical limiting values and recoveries. For the proposed method a limit of detection (LOD) of 5.8 pg for DMA and 14.0 pg for MMA was found. The accuracy was established by comparing the mean value measured for DMA in the certified reference material BCR-627 (tuna fish) with the certified one. MMA was not quantified in marine samples due to its low content. In shrimp samples DMA was not detectable. For codfish a DMA-content of 0.20±0.004 mg kg-1, for 'Surströmming' an amount of 0.38±0.02 mg kg-1 and for herring, which showed the highest amount of DMA, a content of 1.15±0.03 mg kg-1 was determined. KW - Arsenic species analysis KW - Monomethylarsonate KW - Dimethylarsenate KW - Derivatization KW - Gas chromatography KW - Mass spectrometry PY - 2012 U6 - https://doi.org/10.1016/j.talanta.2012.10.021 SN - 0039-9140 VL - 101 SP - 524 EP - 529 PB - Elsevier CY - Amsterdam AN - OPUS4-26931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Mülow-Stollin, Ulrike A1 - Hering, S. A1 - Richter, Janine A1 - Piechotta, Christian A1 - Paul, Andrea A1 - Braun, Ulrike T1 - A first pilot study on the sorption of environmental pollutants on various microplastic materials N2 - With the drastic increase in plastic production, the input of plastic particles into the environment has become a recognised problem. Xenobiotics are able to sorb to polymer materials, and this process is further enhanced where they Encounter microplastics (plastic fragments <5 mm). In this work we studied the sorption of metformin, a type-2 diabetes drug, and difenoconazole, a fungicide, onto the virgin polymer materials polyamide (PA), polypropylene (PP), and polystyrene (PS). Additionally, PP was cryo-milled and PA was treated with acid to investigate the influence of an increase in surface area and chemical modification. The material properties were also studied by dynamic scanning calorimetry (DSC), gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR). Sorption experiments were performed on the basis of a full factorial design examining the effect of agitation, pH value, and salinity. Experimental results showed that difenoconazole sorbs readily to all microplastics, whereas the more polar analyte metformin did not show any affinity to the materials used. For difenoconazole the governing factor in all cases is agitation, while both pH and salinity exhibited only a slight influence. The modification of polymers leads to enhanced sorption, indicating that an increase in surface area (cryo-milled PP) or inner volume (acid-treated PA) strongly favours adsorption. Moreover, long-term experiments demonstrated that the time until equilibrium is reached depends strongly on the particle size. KW - Difenoconazole KW - Metformin KW - Plastic debris KW - Polymer KW - Dynamic scanning calorimetry PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-402393 SN - 2380-2391 VL - 4 IS - 1 SP - Article 1000191, 1 EP - 8 PB - Omics International CY - Los Angeles AN - OPUS4-40239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -