TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank A1 - Jochems, Frank T1 - Compatibility of sealing materials with biofuels, biodiesel-heating oil blends and premium grade fuel at different temperatures N2 - Biofuels including ethanol and biodiesel (fatty acid methyl ester) represent an important renewable fuel alternative to petroleum-derived transport fuels. Increasing biofuel use would bring some benefits, such as a reduction in oil demands and greenhouse gas emissions, and an improvement in air quality. Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. The question arises of whether sealing materials are resistant to fuels with bioethanol and biodiesel (rapeseed oil fatty acid methyl ester). The aim of this work is to study the interaction between sealing materials such as FKM (fluorocarbon rubber), EPDM (ethylene-propylene-diene rubber), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), NBR (acrylonitrile-butadiene rubber), IIR (butyl rubber), VMQ (methyl-vinyl-silicone rubber), FVMQ (methyl-fluoro-silicone rubber) and PA (polyamide) and biofuels such as biodiesel (FAME, non-aged and 2 years aged), E85 (fuel with 85% ethanol) and B10 (heating oil with 10% biodiesel, non-aged and one year aged) compared with premium-grade fuel at 20°C, 40°C and 70°C for 84 days. Exposure experiments were conducted with specimens of these elastomers to document the changes in the mass and tensile properties of these sealing materials. Visual examination of some test specimens clearly showed a great volume increase until breakage or partial dissolution. The sealing materials FVMQ, VMQ and PA were evaluated as resistant in E85 at 20°C and 40°C with a reduction of tensile properties limited to 15%. None of the examined materials was evaluated as resistant at 70°C with even fluorocarbon rubber losing 20% of its tensile strength in E85. When exposed to biodiesel, elastomers were affected in two ways: firstly, by absorption of liquid by the elastomers and, secondly, by dissolution of soluble components from the elastomers into the liquid medium. Swelling was the result of the high absorption by the elastomers CR, CSM, EPDM, IIR and NBR in comparison to their dis-solution in non-aged and two years aged biodiesel. FKM, VMQ and PA were evaluated as resistant sealing materials in non-aged biodiesel at 40°C. FKM was still resistant in aged biodiesel at 40°C but only to a limited degree at 70°C. The sealing materials CR, CSM, EPDM, IIR, NBR and VMQ were damaged to a high extent in non-aged and one year aged B10 as a result of swelling up to 70°C. FVMQ and PA can be evaluated as resistant in non-aged and one year aged B10 at 20°C and 40°C. However, FKM was evaluated as resistant up to 70°C. The exposure tests showed that all the elastomers tested were resistant in the premium-grade fuel Super at 20°C. On increasing the temperature to 40°C, only FKM, VMQ and PA were resistant to Super. At 70°C FKM showed the best resistance. T2 - EUROCORR 2014 - European corrosion congress CY - Pisa, Italy DA - 08.09.2014 KW - Compatibility KW - Sealing materials KW - Biofuels KW - Mass loss KW - Change in tensile properties PY - 2014 SN - 978-3-89746-159-8 SP - 1 EP - 13 AN - OPUS4-31427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank T1 - Compatibility of elastomers with biofuels N2 - Biofuels represent an important renewable fuel alternative to petroleum-derived transport fuels. Materials compatibility is a major concern whenever the fuel composition is changed. The aim of this work is to study the interaction of the elastomers: FKM, EPDM, CR, CSM, NBR, IIR, VMQ and FVMQ and biofuels such as biodiesel (FAME), E85 (fuel with 85% ethanol) and B10 (heating oil with 10% biodiesel). Exposure tests were performed with test specimens at 40°C (104°F) and 70°C (158°F) for 84 days to document the changes in mass, volume and tensile properties according to ISO 1817. The exposure tests in E85 showed that the weight gain caused by swelling was in the range up to 12%. The lowest decrease in the tensile properties was determined for FKM, VMQ and IIR. The weight gain of the elastomers in biodiesel varied between 10% (FKM) and 126% (CSM) and the loss of tensile strength between 16% (FKM) and 100% (CSM) at 70°C (158°F). FKM and FVMQ absorbed much less B10 and swelled less. NBR, EPDM, CR, CSM, IIR and VMQ were not resistant to B10 at all as the decrease in the tensile properties was significantly over 50%. Among all of the elastomers FKM showed high compatibility with these biofuels up to 70°C (158°F). T2 - Corrosion 2014 CY - San Antonio, TX, USA DA - 09.03.2014 KW - Biofuels KW - Elastomers KW - Compatibility KW - Change in tensile properties KW - Change in mass KW - Sealing materials KW - Biodiesel KW - E85 KW - B10 KW - Mass loss KW - Tensile properties PY - 2014 SP - Paper 3745, 1 EP - 9 AN - OPUS4-30411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -