TY - GEN A1 - Lisec, Jan T1 - InterpretMSSpectrum (R package to annotate mass spectra) N2 - Gas chromatography using atmospheric pressure chemical ionization coupled to mass spectrometry (GC/APCI-MS) is an emerging metabolomics platform, providing much-enhanced capabilities for structural mass spectrometry as compared to traditional electron ionization (EI)-based techniques. To exploit the potential of GC/APCI-MS for more comprehensive metabolite annotation, a major bottleneck in metabolomics, we here present the novel R-based tool InterpretMSSpectrum assisting in the common task of annotating and evaluating in-source mass spectra as obtained from typical full-scan experiments. After passing a list of mass-intensity pairs, InterpretMSSpectrum locates the molecular ion (M0), fragment, and adduct peaks, calculates their most likely sum formula combination, and graphically summarizes results as an annotated mass spectrum. Using (modifiable) filter rules for the commonly used methoximated-trimethylsilylated (MeOx-TMS) derivatives, covering elemental composition, typical substructures, neutral losses, and adducts, InterpretMSSpectrum significantly reduces the number of sum formula candidates, minimizing manual effort for postprocessing candidate lists. We demonstrate the utility of InterpretMSSpectrum for 86 in-source spectra of derivatized standard compounds, in which rank-1 sum formula assignments were achieved in 84% of the cases, compared to only 63% when using mass and isotope information on the M0 alone. We further use, for the first time, automated annotation to evaluate the purity of pseudospectra generated by different metabolomics preprocessing tools, showing that automated annotation can serve as an integrative quality measure for peak picking/deconvolution methods. As an R package, InterpretMSSpectrum integrates flexibly into existing metabolomics pipelines and is freely available from CRAN (https://cran.r-project.org/). KW - Mass Spectrometry KW - Spectra annotation KW - Software KW - R package PY - 2016 UR - https://github.com/cran/InterpretMSSpectrum/ PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-57856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Lisec, Jan A1 - Jaeger, C. ED - Antonio, C. T1 - Statistical and Multivariate Analysis of MS-Based Plant Metabolomics Data N2 - Raw data from metabolomics experiments are initially subjected to peak identification and signal deconvolution to generate raw data matrices m × n, where m are samples and n are metabolites. We describe here simple statistical procedures on such multivariate data matrices, all provided as functions in the programming environment R, useful to normalize data, detect biomarkers, and perform sample classification. KW - Mass-Spectrometry KW - Multivariate Statistics PY - 2018 SN - 978-1-4939-7819-9 SN - 978-1-4939-7818-2 U6 - https://doi.org/10.1007/978-1-4939-7819-9_20 SN - 1064-3745 SN - 1940-6029 VL - 1778 SP - Chapter 20, 285 EP - 296 PB - Springer-Verlag AN - OPUS4-45492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Hoffmann, F. A1 - Jaeger, C. A1 - Bhattacharya, A. A1 - Schmitt, C. A. T1 - Nontargeted Identification of Tracer Incorporation in High- Resolution Mass Spectrometry N2 - “Fluxomics” refers to the systematic analysis of metabolic fluxes in a biological system and may uncover novel dynamic properties of metabolism that remain undetected in conventional metabolomic approaches. In labeling experiments, tracer molecules are used to track changes in the isotopologue distribution of metabolites, which allows one to estimate fluxes in the metabolic network. Because unidentified compounds cannot be mapped on pathways, they are often neglected in labeling experiments. However, using recent developments in de novo annotation may allow to harvest the information present in these compounds if they can be identified. Here, we present a novel tool (HiResTEC) to detect tracer incorporation in high-resolution mass spectrometry data sets. The software automatically extracts a comprehensive, nonredundant list of all compounds showing more than 1% tracer incorporation in a nontargeted fashion. We explain and show in an example data set how mass precision and other filter heuristics, calculated on the raw data, can efficiently be used to reduce redundancy and noninformative signals by 95%. Ultimately, this allows to quickly investigate any labeling experiment for a complete set of labeled compounds (here 149) with acceptable false positive rates. We further re-evaluate a published data set from liquid chromatography-electrospray ionization (LC-ESI) to demonstrate broad applicability of our tool and emphasize importance of quality control (QC) tests. HiResTEC is provided as a package in the open source software framework R and is freely available on CRAN. KW - Fluxomics KW - R package KW - Mass-Spectrometry PY - 2018 U6 - https://doi.org/10.1021/acs.analchem.8b00356 VL - 90 IS - 12 SP - 7253 EP - 7260 PB - ACS Publications AN - OPUS4-45493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schrezenmeier, E. A1 - Hoffmann, F. A1 - Jaeger, C. A1 - Schrezenmeier, J. A1 - Lisec, Jan A1 - Glander, P. A1 - Algharably, E. A1 - Kreutz, R. A1 - Budde, K. A1 - Duerr, M. A1 - Halleck, F. T1 - Pharmacokinetics of Daclatasvir, Sofosbuvir and GS-331007 in a Prospective Cohort of HCV positive Kidney Transplant Recipients N2 - Limited data exist on the pharmacokinetic profile of novel direct acting antivirals in kidney transplant recipients. Daclatasvir is primarily eliminated via the biliary route and sofosbuvir via the renal route; here we report the pharmacokinetic profile of combined treatment with these compounds in a prospective study of hepatitis C virus positive kidney transplant recipients (EudraCT: 2014-004551-32). In this study plasma samples of 16 HCV positive kidney transplant recipients receiving daclatasvir and sofosbuvir were collected at 4 time points at day 1, 7, 14, 21, 56, and 84 after start of treatment. Inclusion criteria were stable graft function and an estimated GFR (eGFR) > 30mL/min/1.73m. Daclatasvir, sofosbuvir and GS-331007 (inactive metabolite of sofosbuvir) plasma concentrations were determined using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry. All patients showed a rapid virological response with HCV RNA below the detection limit 21 days after the start of therapy (medium time to viral clearance). No difference of the areas under the concentration-time curve (AUC) of daclatsavir, sofosbuvir and GS-331007 was observed between patients with an eGFR below or ≥ 60mL/min. For GS-331007, no relevant changes of trough levels were observed over time. Mean GS-331007 trough levels were 339.5±174.9 ng/mL in patients with an eGFR ≥ 60mL/min and 404.3±226 ng/mL in patients with an eGFR < 60mL/min at day 7 (p=0.52). At day 84, GS-331007 trough levels were 357.8±200.8 ng/mL and 404.2±70.2 ng/mL in patients with an eGFR ≥ 60 mL/min and in patients with an eGFR < 60 mL/min, respectively (p=0.51). The accumulation ratios of renally eliminated GS-331007 for AUC and Cmax did not significantly differ between the two eGFR groups at day 7. An impaired eGFR (30-60 mL/min) does not lead to a dose accumulation of daclatasvir, sofosbuvir and GS-331007. This study provides the rationale for future studies investigating the pharmacokinetic profile of sofosbuvir based HCV treatment in kidney transplant recipients with an eGFR < 30 mL/min. KW - Mass-Spectrometry PY - 2018 U6 - https://doi.org/10.1097/FTD.0000000000000567 SN - 0163-4356 VL - 41 IS - 1 SP - 53 EP - 58 PB - Wolters Kluwer AN - OPUS4-46647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adamus, A. A1 - Peer, K. A1 - Ali, I. A1 - Lisec, Jan A1 - Falodun, A. A1 - Frank, M. A1 - Seitz, G. A1 - Engel, N. T1 - Berberis orthobotrys – A promising herbal anti-tumorigenic candidate for the treatment of pediatric alveolar rhabdomyosarcoma N2 - Ethnopharmacological relevance: Berberis orthobotrys (BORM) is a medical plant with a long history in traditional usage for the treatment of wounds, cancer, gastrointestinal malady and several other diseases. Our previous studies identified the endemic Pakistani plant Berberis orthobotrys Bien. ex Aitch. as promising source for the treatment of breast cancer and osteosarcoma. Aim of the study: The present study was aimed to evaluate the anti-cancer properties of 26 plant derived extracts and compounds including the methanolic root extract of Berberis orthobotrys (BORM) on pediatric alveolar rhabdomyosarcoma (RMA), which is known to develop drug resistance, metastatic invasion and potential Tumor progression. Materials and methods: The main anti-tumor activity of BORM was verified by focusing on morphological, cell structural and metabolic alterations via metabolic profiling, cell viability measurements, flow cytometry, western blotting and diverse microscopy-based methods using the human RMA cell line Rh30. Results: Exposure of 25 μg/ml BORM exerts an influence on the cell stability, the degradation of oncosomes as well as the shutdown of the metabolic activity of RMA cells, primarily by downregulation of the energy metabolism. Therefore glycyl-aspartic acid and N-acetyl serine decreased moderately, and uracil increased intracellularly. On healthy, non-transformed muscle cells BORM revealed very low metabolic alterations and nearly no cytotoxic impact. Furthermore, BORM is also capable to reduce Rh30 cell migration (~50%) and proliferation (induced G2/M cycle arrest) as well as to initiate apoptosis confirmed by reduced Bcl-2, Bax and PCNA expression and induced PARP-1 cleavage. Conclusions: The study provides the first evidence, that BORM treatment is effective against RMA cells with low side effects on healthy cells. KW - Mass-Spectrometry PY - 2018 U6 - https://doi.org/10.1016/j.jep.2018.10.002 SN - 0378-8741 VL - 229 SP - 262 EP - 271 PB - Elsevier B.V. AN - OPUS4-46458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, C. A1 - Zaidi, Nousheen T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Under oxygen/nutrient deprivation cancer cells modify the Balance between fatty acid (FA) synthesis and uptake, which alters the levels of individual triglyceride or phospholipid sub-species. These modifications may affect survival and drug-uptake in cancer cells. Here, we aimed to attain a more holistic overview of the lipidomic profiles of cancer cells under stress and assess the changes in Major lipid-classes. First, expressions of markers of FA synthesis/uptake in cancer cells were assessed and found to be differentially regulated under metabolic stress. Next, we performed a broad lipidomics assay, comprising 244 lipids from six major classes, which allowed us to investigate robust stress induced changes in median levels of different lipid classes -additionally stratified by fatty acid side chain saturation status. The lipidomic profiles of cancer cells were predominantly affected by nutrient-deprivation. Neutral lipid compositions were markedly modified under serum-deprivation and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast, cancer cells maintained lipid class homeostasis under hypoxic stress. We conclude that although the levels of individual lipid moieties alter under hypoxia, the robust averages of broader lipid class remain unchanged. KW - Mass-Spectrometry KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2018 U6 - https://doi.org/10.1101/382457 SP - 1 EP - 25 PB - Cold Spring Harbor Laboratory CY - Cold Spring Harbor, NY AN - OPUS4-46814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tjaden, B. A1 - Baum, K. A1 - Marquardt, V. A1 - Simon, M. A1 - Trajkovic-Arsic, M. A1 - Kouril, T. A1 - Siebers, B. A1 - Lisec, Jan A1 - Siveke, J. T. A1 - Schulte, J. H. A1 - Benary, U. A1 - Remke, M. A1 - Wolf, J. A1 - Schramm, A. T1 - MYCN-induced metabolic rewiring creates novel therapeutic vulnerabilities in neuroblastoma N2 - MYCN is a transcription factor that is aberrantly expressed in many tumor types and is often correlated with poor patient prognosis. Recently, several lines of evidence pointed to the fact that oncogenic activation of MYC family proteins is concomitant with reprogramming of tumor cells to cope with an enhanced need for metabolites during cell growth. These adaptions are driven by the ability of MYC proteins to act as transcriptional amplifiers in a tissue-of-origin specific manner. Here, we describe the effects of MYCN overexpression on metabolic reprogramming in neuroblastoma cells. Ectopic expression of MYCN induced a glycolytic switch that was concomitant with enhanced sensitivity towards 2-deoxyglucose, an inhibitor of glycolysis. Moreover, global metabolic profiling revealed extensive alterations in the cellular metabolome resulting from overexpression of MYCN. Limited supply with either of the two main carbon sources, glucose or glutamine, resulted in distinct shifts in steady-state metabolite levels and significant changes in glutathione metabolism. Interestingly, interference with glutamine-glutamate conversion preferentially blocked proliferation of MYCN overexpressing cells, when glutamine levels were reduced. Thus, our study uncovered MYCN induction and nutrient levels as important metabolic master switches in neuroblastoma cells and identified critical nodes that restrict tumor cell proliferation. KW - Mass-spectrometry KW - Tumor metabolism KW - MYCN PY - 2018 U6 - https://doi.org/10.1101/423756 SP - 1 EP - 21 PB - Cold Spring Harbor Laboratory CY - Cold Spring Harbor, NY AN - OPUS4-46815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Lisec, Jan T1 - MetabolomicsBasics (R package to process and analyze metabolomics datasets) N2 - Raw data from metabolomics experiments are initially subjected to peak identification and signal deconvolution to generate raw data matrices m × n, where m are samples and n are metabolites. We describe here simple statistical procedures on such multivariate data matrices, all provided as functions in the programming environment R, useful to normalize data, detect biomarkers, and perform sample classification. KW - Software KW - Mass Spectrometry KW - R package KW - Data processing PY - 2018 UR - https://github.com/cran/MetabolomicsBasics/ PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-57854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Rashid, R. A1 - Munir, R. A1 - Zaidi, N. T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Background: Cancer cells modify the balance between fatty acid (FA) synthesis and uptake under metabolic stress, induced by oxygen/nutrient deprivation. These modifications were shown to alter the levels of individual triglyceride (TG) or phospholipid sub-species. To attain a holistic overview of the lipidomic profiles of cancer cells under stress we performed a broad lipidomic assay, comprising 244 lipids from six major classes. This assay allowed us to perform robust analyses and assess the changes in averages of broader lipid-classes, stratified on the basis of saturation index of their fatty-acyl side chains. Methods: Global lipidomic profiling using Liquid Chromatography-Mass Spectrometry was performed to assess lipidomic profiles of biologically diverse cancer cell lines cultivated under metabolically stressed conditions. Results: Neutral lipid compositions were markedly modified under serum-deprived conditions and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast and unexpectedly, no robust changes were observed in lipidomic profiles of hypoxic (2% O2) Cancer cells despite concurrent changes in proliferation rates and metabolic gene expression. Conclusions: Serum-deprivation significantly affects lipidomic profiles of cancer cells. Although, the levels of individual lipid moieties alter under hypoxia (2% O2), the robust averages of broader lipid classes remain unchanged. KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-481061 SN - 1471-2407 VL - 19 SP - 501, 1 EP - 11 PB - Springer Nature AN - OPUS4-48106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation. KW - Transformation products KW - Monensin KW - Veterinary drugs KW - Electrochemistry KW - Hydrolysis KW - LC/HRMS PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-485689 SN - 1420-3049 VL - 24 IS - 15 SP - 2732, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-48568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -