TY - JOUR A1 - Hofmann-Böllinghaus, Anja A1 - Knaust, Christian A1 - Krüger, Simone A1 - Raspe, Tina A1 - Deubel, Jan T1 - Detailed analysis of a smouldering fire scenario at the murder scene - experimental and numerical investigations JF - Fire and materials N2 - Based on forensic evidence, a smouldering fire was observed to have occurred at a murder scene. Identification of a reasonable timeline – specifically the fire dynamics of the ignition and fire growth that occurred coincident with the death that took place – became an important focus of the criminal investigation that followed. The fire service was called when a neighbour saw a grey smoke escaping through the ventilation system of the bathrooms on the roof of the house. One flat door with elevated temperatures was found. The fire fighter who entered the flat first reported later that the flat was completely filled with smoke and all windows were closed. When the fire fighter opened the balcony door, he saw flames on the sofa that he extinguished. Then he found a body on the floor. The autopsy showed later that the victim was dead before the fire started. The police suspected that the murderer probably had deliberately set the fire to destroy evidence. One suspect had been witnessed to be in the flat approximately 2 h before the fire was detected by the neighbour. The aim of this project was to investigate how the fire most likely started and developed. KW - Fire investigation KW - Smouldering fire KW - Fire development KW - Crime KW - Numerical modelling PY - 2014 DO - https://doi.org/10.1002/fam.2222 SN - 0308-0501 SN - 1099-1018 VL - 38 IS - 8 SP - 806 EP - 816 PB - Heyden CY - London AN - OPUS4-32016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Werrel, Martin A1 - Deubel, Jan A1 - Krüger, Simone A1 - Hofmann-Böllinghaus, Anja A1 - Krause, U. T1 - The calculation of the heat release rate by oxygen consumption in a controlled-atmosphere cone calorimeter JF - Fire and materials N2 - The standard cone calorimeter according to ASTM E 1354 and ISO 5660 enables reaction-to-fire tests to be performed in ambient atmospheric conditions. A controlled-atmosphere chamber modifies the standard apparatus in a way that allows tests to be performed in nonambient conditions as well. The enclosed chamber is placed underneath the standard exhaust hood and does not have a closed connection to the hood. With this open arrangement, the exhaust gases are diluted by excess air drawn in from the laboratory surroundings. Heat-induced changes in the consequential dilution ratio affect the calculation of fire quantities and, when neglected, lead to deviations of up to 30% in heat release rate. The paper introduces a test protocol and equations to calculate the heat release rate taking dilution effects into account. A mathematical correction is shown that compensates for the dilution effects while avoiding extensive mechanical changes in the equipment. KW - Controlled-atmosphere cone calorimeter KW - Heat release rate KW - Oxygen consumption KW - Cone calorimeter KW - Vitiation and ventilation control KW - Excess air PY - 2014 DO - https://doi.org/10.1002/fam.2175 SN - 0308-0501 SN - 1099-1018 VL - 38 IS - 2 SP - 204 EP - 226 PB - Heyden CY - London AN - OPUS4-30317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -