TY - JOUR A1 - Girard-Lauriault, Pierre-Luc A1 - Ruiz, J.-C. A1 - Gross, Thomas A1 - Wertheimer, M. R. A1 - Unger, Wolfgang T1 - Ultra-shallow chemical characterization of organic thin films deposited by plasma and vacuum-ultraviolet, using angle- and excitation energy-resolved XPS N2 - Nitrogen (N)-rich organic thin films were deposited using both low-pressure plasma- and vacuum-ultraviolet-based techniques, from mixtures of ammonia (NH3) and ethylene (C2H4). These films were investigated using angle-resolved and excitation energy resolved X-ray photoelectron spectroscopy (ARXPS and ERXPS, respectively) in order to determine their sub-surface chemical profiles. These two techniques enable one to tune the “XPS 95%” information depth, z 95%, by varying either the angle or the excitation energy. Using a combination of both techniques, z 95% can be varied continuously from 0.7 to 11 nm. The surface-near chemistry is investigated using both high-resolution C 1s spectra and elemental concentrations derived from elemental peak intensities. Results show that while laboratory XPS, and even ARXPS, suggest homogenous surface chemistries, the novel combination of ARXPS and ERXPS points to the existence of a compositional profile in the extreme outer surface layer. Our conclusions are supported by simulations using SESSA software. KW - Plasma polymers KW - Vacuum ultraviolet photopolymers KW - Synchrotron XPS KW - Depth profile PY - 2011 U6 - https://doi.org/10.1007/s11090-011-9306-3 SN - 0272-4324 VL - 31 IS - 4 SP - 535 EP - 550 PB - Plenum Publ. Corp. CY - New York, NY, USA AN - OPUS4-23993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhuyan, Md Delwar Hossain A1 - Döhler, M. A1 - Lecieux, Y. A1 - Lupi, C. A1 - Thomas, J.-C. A1 - Schoefs, F. A1 - Hille, Falk A1 - Mevel, L. T1 - Statistical subspace based damage localization on Saint-Nazaire bridge mock-up N2 - The subject of damage localization is an important issue for Structural Health Monitoring (SHM) particularly in mechanical or civil structures under ambient excitation. In this paper, the statistical subspacebased damage localization method has been applied on a benchmark application, namely a 1/200 scale model of the Saint-Nazaire Bridge, which is a cable-stayed bridge located on the Loire River near the river’s mouth. The employed damage localization method combines data-driven features with physical parameter information from a finite element model in statistical tests, avoiding typical ill-conditioning problems of FE model updating. Damage is introduced in the mockup for cable failures on some of the 72 cables. The purpose of the experiment is to assess the capability of damage assessment methods to find a cable failure. T2 - 8. International Operational Modal Analysis Conference CY - Kopenhagen, Denmark DA - 12. Mai 2019 KW - Damage localization KW - Cable-stayed bridge KW - Cable failure KW - Structural health monitoring PY - 2019 SP - 1 EP - 9 AN - OPUS4-48183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -