TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Kampf, C. J. A1 - Lucas, K. A1 - Lang-Yona, N. A1 - Fröhlich-Nowoisky, J. A1 - Shiraiwa, M. A1 - Lakey, P. S. J. A1 - Lai, S. A1 - Liu, F. A1 - Kunert, A. T. A1 - Ziegler, K. A1 - Shen, F. A1 - Sgarbanti, R. A1 - Weber, B. A1 - Bellinghausen, I. A1 - Saloga, J. A1 - Weller, Michael G. A1 - Duschl, A. A1 - Schuppan, D. A1 - Pöschl, U. T1 - Air pollution and climate change effects on allergies in the anthropocene: Abundance, interaction, and modification of allergens and adjuvants N2 - Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions. KW - Allergie KW - Klimaveränderung KW - Luftverschmutzung KW - Partikel KW - Ozon KW - Stickoxide KW - Allergene KW - Adjuvantien KW - PALM KW - DAMP PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404531 DO - https://doi.org/10.1021/acs.est.6b04908 SN - 1520-5851 SN - 0013-936X VL - 51 IS - 8 SP - 4119 EP - 4141 PB - American Chemical Society (ACS) CY - Washington AN - OPUS4-40453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Bellinghausen, I. A1 - Leifke, A. L. A1 - Backes, A. T. A1 - Bothen, N. A1 - Ziegler, K. A1 - Weller, Michael G. A1 - Saloga, J. A1 - Schuppan, D. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. T1 - Chemical modification by peroxynitrite enhances TLR4 activation of the grass pollen allergen Phl p 5 N2 - The chemical modification of aeroallergens by reactive oxygen and nitrogen species (ROS/RNS) may contribute to the growing prevalence of respiratory allergies in industrialized countries. Post-translational modifications can alter the immunological properties of proteins, but the underlying mechanisms and effects are not well understood. In this study, we investigate the Toll-like receptor 4 (TLR4) activation of the major birch and grass pollen allergens Bet v 1 and Phl p 5, and how the physiological oxidant peroxynitrite (ONOO–) changes the TLR4 activation through protein nitration and the formation of protein dimers and higher oligomers. Of the two allergens, Bet v 1 exhibited no TLR4 activation, but we found TLR4 activation of Phl p 5, which increased after modification with ONOO– and may play a role in the sensitization against this grass pollen allergen. We attribute the TLR4 activation mainly to the two-domain structure of Phl p 5 which may promote TLR4 dimerization and activation. The enhanced TLR4 signaling of the modified allergen indicates that the ONOO–-induced modifications affect relevant protein-receptor interactions. This may lead to increased sensitization to the grass pollen allergen and thus contribute to the increasing prevalence of allergies in the Anthropocene, the present era of globally pervasive anthropogenic influence on the environment. KW - Bet v 1 KW - Birch pollen allergen KW - Phl p 5 KW - Grass pollen KW - Phleum pratense KW - Betula pendula KW - Nitration KW - Nitrotyrosine KW - Protein nitration KW - Toll-like receptor 4 KW - Allergy KW - Enhancement KW - Oligomerization KW - Dimerization KW - TLR4 activation KW - Air pollution KW - Nitrogen oxides KW - Inflammation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570298 DO - https://doi.org/10.3389/falgy.2023.1066392 VL - 4 SP - 1 EP - 7 PB - Frontiers Media SA CY - Lausanne, Switzerland AN - OPUS4-57029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pagano, R. A1 - Ziegler, Mathias A1 - Tomm, J.W. A1 - Esquivias, I. A1 - Tijero, J.M.G. A1 - O'Callaghan, J.R. A1 - Michel, N. A1 - Krakowski, M. A1 - Corbett, B. T1 - Two-dimensional carrier density distribution inside a high power tapered laser diode N2 - The spontaneous emission of a GaAs-based tapered laser diode emitting at λ = 1060 nm was measured through a window in the transparent substrate in order to study the carrier density distribution inside the device. It is shown that the tapered geometry is responsible for nonuniform amplification of the spontaneous/stimulated emission which in turn influences the spatial distribution of the carriers starting from below threshold. The carrier density does not clamp at the lasing threshold and above it the device shows lateral spatial hole-burning caused by high stimulated emission along the cavity center. KW - Carrier density KW - Gallium arsenide KW - III-V semiconductors KW - Indium compounds KW - Laser cavity resonators KW - Optical hole burning KW - Quantum well lasers KW - Stimulated emission KW - Superradiance PY - 2011 DO - https://doi.org/10.1063/1.3596445 SN - 0003-6951 SN - 1077-3118 VL - 98 SP - 221110-1 EP - 221110-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-23873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabolle, Markus A1 - Ziegler, J. A1 - Merkulov, A. A1 - Nann, T. A1 - Resch-Genger, Ute T1 - Stability and Fluorescence Quantum Yield of CdSe-ZnS Quantum Dots - Influence of the Thickness of the ZnS Shell N2 - We investigated the correlation between the thickness of the ZnS shell of CdSe–ZnS quantum dots (QDs), the stability of the particles, and the fluorescence quantum yield. As a measure for stability, a new shell quality test was developed. This test is based on the reaction of the QDs with photochemically formed thiophenol radicals and communicates an imperfect ZnS shell by a rapid and complete loss of fluorescence. The quantum yield increases from less than 5% for unshelled CdSe up to 50%, with an increase in ZnS shell thickness up to 0.6–0.8 nm. At the same time, the particles become significantly more stable, as revealed by the shell test. KW - Quantum dot KW - Nanocrystal KW - Semiconductor KW - Fluorescence KW - Quantum yield KW - CdSe KW - CdSe-ZnS KW - Shell KW - ZnS shell KW - Stability KW - Stability test PY - 2008 DO - https://doi.org/10.1196/annals.1430.021 SN - 0077-8923 SN - 1749-6632 SN - 0094-8500 VL - 1130 SP - 235 EP - 241 PB - New York Academy of Sciences CY - New York, NY AN - OPUS4-17743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rammelt, S. A1 - Heck, C. A1 - Bernhardt, R. A1 - Bierbaum, S. A1 - Scharnweber, D. A1 - Goebbels, Jürgen A1 - Ziegler, J. A1 - Biewener, A. A1 - Zwipp, H. T1 - In Vivo Effects of Coating Loaded and Unloaded Ti Implants with Collagen, Chondroitin Sulfate, and Hydroxyapatite in the Sheep Tibia N2 - The in vivo effects of coating titanium implants with organic extracellular matrix molecules were examined in the sheep tibia. Titanium screws (5.0 mm) were coated with type I collagen (Ti/Coll) or type I collagen and chondroitin sulfate (Ti/Coll/CS) by biomimetic fibrillogenesis. Uncoated screws (Ti) and screws coated with hydroxyapatite (Ti/HA) served as control. Six adult female sheep received one screw of each type to stabilize a midshaft tibial fracture with external fixation. Four cylindrical implants of 4-mm outer diameter and 3.3-mm inner diameter with the same coatings were inserted into the tibial head. No pin track infections were seen at the time of implant retrieval 6 weeks after implantation. Extraction torque was greater for Ti/HA (1181 Nmm) and Ti/Coll/CS (1088 Nmm) compared to Ti/Coll (900 Nmm) and Ti (904 Nmm) [N.S.]. Newly formed bone was noted around all coated screws within the medullary cavity. Macrophage and osteoclast activity was significantly reduced around Ti/Coll/CS in both types of implants compared to uncoated controls (p < 0.05). Osteoblast activity was significantly increased around loaded Ti/Coll and Ti/Coll/CS screws compared to uncoated Ti screws (p < 0.05). Microtomographic evaluation (SRµCT) revealed no significant differences in new bone formation around the unloaded tibial head implants.Coating of external fixation devices with of type I collagen and chondroitin sulfate appears to have similar effects with respect to stability and bone healing as HA but with less osteoclast activity. These findings were more pronounced under loaded than unloaded conditions in the sheeptibia. KW - titanium KW - Bone implants KW - Coating KW - Chondroitin sulfate KW - Collagen KW - External fixation PY - 2007 DO - https://doi.org/10.1002/jor.20403 SN - 0736-0266 SN - 1554-527X VL - 25 IS - 8 SP - 1052 EP - 1061 PB - Wiley CY - Hoboken, NJ AN - OPUS4-15817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, Kurt A1 - Franke, Werner A1 - Wolf, J. T1 - Bericht über die Abbruchsprengung des THW-Berlin in Zusammenarbeit mit dem Laboratorium 4.32 "Explosive Stoffe" der BAM PY - 1981 SN - 0340-7551 VL - 11 IS - 1 SP - 8 EP - 11 PB - Bundesanstalt für Materialprüfung CY - Berlin AN - OPUS4-31909 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabolle, Markus A1 - Kapusta, P. A1 - Nann, T. A1 - Shu, X. A1 - Ziegler, J. A1 - Resch-Genger, Ute T1 - Fluorescence lifetime multiplexing with nanocrystals and organic labels N2 - The potential of semiconducting nanocrystals or so-called quantum dots (QDs) for lifetime multiplexing has not been investigated yet, despite the increasing use of QDs in (bio)analytical detection, biosensing, and fluorescence imaging and the obvious need for simple and cost-effective tools and strategies for the simultaneous detection of multiple analytes or events. This is most likely related to their multiexponential decay behavior as for multiplex chromophores, typically monoexponential decay kinetics are requested. The fluorescence decay kinetics of various mixtures of a long-lived, multiexponentially decaying CdSe QD and a short-lived organic dye were analyzed, and a model was developed for the quantification of these labels from the measured complex decay kinetics as a first proof-of-concept for the huge potential of these labels for lifetime multiplexing. In a second step, we evaluated the potential of mixtures of two types of QDs, varying in constituent material to realize distinguishable, yet multiexponential decay kinetics and similar absorption and emission spectra. Strategies for lifetime multiplexing with nanocrystalline labels were derived on the basis of these measurements. KW - Multiplexing KW - Lifetime KW - Fluorescence KW - Photoluminescence KW - TCSPC KW - Quantum dot KW - Nanocrystal KW - CdSe KW - InP KW - Organic dye KW - DCM PY - 2009 DO - https://doi.org/10.1021/ac900934a SN - 0003-2700 SN - 1520-6882 VL - 81 IS - 18 SP - 7807 EP - 7813 PB - American Chemical Society CY - Washington, DC AN - OPUS4-20279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marinelli, F. A1 - Kuhlmann, S. I. A1 - Grell, E. A1 - Kunte, Hans-Jörg A1 - Ziegler, C. M. A1 - Faraldo-Gómez, J. D. T1 - Evidence for an allosteric mechanism of substrate release from membrane-transporter accessory binding proteins N2 - Numerous membrane importers rely on accessory water-soluble proteins to capture their substrates. These substrate-binding Proteins (SBP) have a strong affinity for their ligands; yet, Substrate release onto the low-affinity membrane transporter must occur for uptake to proceed. It is generally accepted that release is facilitated by the association of SBP and transporter, upon which the SBP adopts a conformation similar to the unliganded state, whose affinity is sufficiently reduced. Despite the appeal of this mechanism, however, direct supporting evidence is lacking. Here, we use experimental and theoretical methods to demonstrate that an allosteric mechanism of enhanced substrate release is indeed plausible. First, we report the atomic-resolution structure of APO TeaA, the SBP of the Na!-coupled ectoine TRAP transporter TeaBC from Halomonas elongata DSM2581T, and compare it with the substrate-bound structure previously reported. Conformational freeenergy landscape calculations based upon molecular Dynamics simulations are then used to dissect the mechanism that couples ectoine binding to structural change in TeaA. These insights allow us to design a triple mutation that biases TeaA toward apo-like conformations without directly perturbing the binding cleft, thus mimicking the influence of the membrane transporter. Calorimetric measurements demonstrate that the ectoine affinity of the conformationally biased triple mutant is 100-fold weaker than that of the wild type. By contrast, a control mutant predicted to be conformationally unbiased displays wild-type affinity. This work thus demonstrates that substrate release from SBPs onto their Membrane transporters can be facilitated by the latter through a mechanism of allosteric modulation of the former. KW - Binding thermodynamics KW - Periplasmic binding protein KW - Secondary transporter KW - ABC transporter KW - Replica-exchange metadynamics PY - 2011 DO - https://doi.org/10.1073/pnas.1112534108 SN - 0027-8424 SN - 1091-6490 VL - 108 IS - 49 SP - E1285 EP - E1292 AN - OPUS4-37681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalinka, Gerhard A1 - Sahin, M. A1 - Schlögl, S. A1 - Wang, J. A1 - Kaynak, B. A1 - Mühlbacher, I. A1 - Ziegler, W. A1 - Kern, W. A1 - Grützmacher, H. T1 - Tailoring the interfaces in glass fiber-reinforced photopolymer composites N2 - The present work provides a comparative study on the interface and adhesion properties of surface modified single glass fibers embedded in an acrylate matrix. To facilitate a covalent bonding at the fibermatrix interface, the fibers are functionalized with selected organosilanes that comprise either passive (unsaturated C¼C bonds of methacrylate moieties) or photoactive functionalities (photocleavable bis(acyl)phosphane oxide groups). Immobilization of the functional silanes is carried out by a classic silanization reaction involving a condensation reaction across the surface hydroxyl groups of the inorganic glass fibers. The change of the physico-chemical properties of the fibers due to desizing and subsequent surface modification is monitored by X-ray photoelectron spectroscopy and zeta potential measurements. In addition, scanning electron microscopy is used to follow the changes in surface morphology. After the modification step, the desized and modified single fibers are embedded in a photocurable acrylate resin formulation. By performing single fiber pull-out tests, maximum pull-out force, friction strength and apparent interfacial shear strength are determined as a function of the coupled silanes. The results reveal that the attached organosilanes lead to a significant increase in adhesion strength, whilst the performance of the photo-cleavable organosilane is superior to the passive methacryl-functional derivative. KW - Photocleavable organosilanes KW - Fiber-matrix interface KW - Photopolymer composites KW - Single fiber pull-out test KW - Surface modification PY - 2018 DO - https://doi.org/10.1016/j.polymer.2018.03.020 SN - 0032-3861 VL - 141 SP - 221 EP - 231 PB - Elsevier Ltd. CY - New York AN - OPUS4-44784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry N2 - Using an infrared camera for radiometric imaging allows the contactless temperature measurement of multiple surface pixels simultaneously. From the measured surface data, a sub-surface structure, embedded inside a sample or tissue, can be reconstructed and imaged when heated by an excitation light pulse. The main drawback in radiometric imaging is the degradation of the spatial resolution with increasing depth, which results in blurred images for deeper lying structures. We circumvent this degradation with blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. The ground-breaking concept of super-resolution can be transferred from optics to thermographic imaging. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser thermography KW - Super resolution PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454506 SN - 978-3-940283-94-8 DO - https://doi.org/10.1080/17686733.2019.1655247 SP - We.3.A.2, 1 EP - 7 AN - OPUS4-45450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -