TY - JOUR A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Wellhausen, Robert A1 - Herrmann, S A1 - Seitz, H A1 - Meyer, Susann A1 - Kunte, Hans-Jörg A1 - Zeman, J. A1 - Uhlig, F A1 - Smiatek, J A1 - Sturm, Heinz T1 - Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA N2 - Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-S-protein (G5P) to a single-stranded DNA (dT(25)). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration-dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonudeotide, which has important consequences for osmotic regulation mechanisms. KW - Aqueous solution KW - Biological structure KW - Raman spectroscopy KW - Organic osmolytes KW - High throughput KW - Gene-5 protein KW - Amino acid KW - Water structure PY - 2015 DO - https://doi.org/10.1021/acs.jpcb.5b09506 SN - 1520-6106 SN - 1089-5647 SN - 1520-5207 VL - 119 IS - 49 SP - 15212 EP - 15220 AN - OPUS4-35800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Genga, R. M. A1 - Conze, S. A1 - Berger, L.M. A1 - Pötschke, J. A1 - Witte, Julien A1 - Schröpfer, D. A1 - Cermak, A. A1 - Zeman, P. A1 - Ngongo, S. A1 - Janse van Vuuren, A. T1 - Enhanced Fe and Ni bonded NbC Laser Surface Engineered based Hardmetals: Alternative Cutter Materials for Electric Vehicle Applications N2 - The efforts to substitute both tungsten carbide (WC) and cobalt (Co) has gained prominence in recent years due to the classification of Co as a carcinogen and the classification of Co and W as critical raw materials in the EU as well as within regulations of the U.S. National Toxicology Program. In this study, substitution of both WC and Co with advanced hardmetals consisting of NbC with Ni and Fe-based metal binders are investigated for their use of machining of metals used electric vehicle manufacturing. The developed NbC-Ni/Fe based hardmetals employ a Machining Property Led Tailored Design (MPLTD) approach. This reverse engineering strategy uses data from machining performance to guide the development of microstructural, mechanical, and behavioral properties. Four advanced NbC-based hardmetals were produced, two with Ni-based binders and two with Fe-based binders, along with two reference materials for comparison (WC-Co and straight NbC-12Ni). Hardmetals were characterized using field emission scanning electron microscopy (FE-SEM), annular dark-field scanning transmission electron microscopy (ADF-STEM), Vickers hardness, fracture toughness, and elastic moduli. Cutting tool inserts were manufactured from the developed hardmetals and enhanced using femto-second laser surface engineering. The inserts’ performance was evaluated through face milling tests on AZ31 automotive magnesium alloy, providing insights into their suitability for high-demand industrial applications. T2 - 21. Plansee Seminar CY - Reutte, Österreich DA - 01.06.2025 KW - Niobium carbide KW - Alternative binders KW - Alternative hard phases KW - Face milling KW - AZ31 magnesium alloy PY - 2025 VL - 2025 SP - 1 EP - 10 AN - OPUS4-65382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -