TY - JOUR A1 - Belsey, N. A. A1 - Cant, D. J. H. A1 - Minelli, C. A1 - Araujo, J. R. A1 - Bock, B. A1 - Brüner, P. A1 - Castner, D. G. A1 - Ceccone, G. A1 - Counsell, J. D. P. A1 - Dietrich, Paul M. A1 - Engelhardt, M. H. A1 - Fearn, S. A1 - Galhardo, C. E. A1 - Kalbe, H. A1 - Kim, J. W. A1 - Lartundo-Rojas, L. A1 - Luftman, H. S. A1 - Nunney, T. S. A1 - Pseiner, J. A1 - Smith, E. F. A1 - Spampinato, V. A1 - Sturm, J. M. A1 - Thomas, A. G. A1 - Treacy, J. P. W. A1 - Veith, L. A1 - Wagstaffe, M. A1 - Wang, H. A1 - Wang, M. A1 - Wang, Y.-C. A1 - Werner, W. A1 - Yang, L. A1 - Shard, A. G. T1 - Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS N2 - We report the results of a Versailles Project on Advanced Materials and Standards (VAMAS) interlaboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure water and particles dried onto a silicon wafer. Participants prepared and analyzed these samples using either X-ray photoelectron spectroscopy (XPS) or low energy ion scattering (LEIS). Careful data analysis revealed some significant sources of discrepancy, particularly for XPS. Degradation during transportation, storage, or sample preparation resulted in a variability in thickness of 53%. The calculation method chosen by XPS participants contributed a variability of 67%. However, variability of 12% was achieved for the samples deposited using a single method and by choosing photoelectron peaks that were not adversely affected by instrumental transmission effects. The study identified a need for more consistency in instrumental transmission functions and relative sensitivity factors since this contributed a variability of 33%. The results from the LEIS participants were more consistent, with variability of less than 10% in thickness, and this is mostly due to a common method of data analysis. The calculation was performed using a model developed for uniform, flat films, and some participants employed a correction factor to account for the sample geometry, which appears warranted based upon a simulation of LEIS data from one of the participants and comparison to the XPS results. KW - VAMAS KW - Interlaboratory Study KW - Nanoparticle coating KW - XPS KW - LEIS KW - shell thicknss and chemistry PY - 2016 UR - http://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b06713 U6 - https://doi.org/10.1021/acs.jpcc.6b06713 IS - 120 SP - 24070 EP - 24079 PB - ACS Publications AN - OPUS4-38428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lin, R. A1 - Li, X. A1 - Krajnc, A. A1 - Li, Z. A1 - Li, M. A1 - Wang, W. A1 - Zhuang, L. A1 - Smart, S. A1 - Zhu, Z. A1 - Appadoo, D. A1 - Harmer, J. R. A1 - Wang, Z. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Beyer, S. A1 - Wang, L. A1 - Mali, G. A1 - Bennett, T. D. A1 - Chen, V. A1 - Hou, J. T1 - Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction N2 - The melting behaviour of metal–organic frameworks (MOFs) has aroused significant research interest in the areas of materials science, condensed matter physics and chemical engineering. This work first introduces a novel method to fabricate a bimetallic MOF glass, through meltquenching of the cobalt-based zeolitic imidazolate Framework (ZIF) [ZIF-62(Co)] with an adsorbed ferric coordination complex. The high-temperature chemically reactive ZIF-62-(Co) liquid facilitates the formation of coordinative bonds between Fe and imidazolate ligands, incorporating Fe nodes into the framework after quenching. The resultant Co–Fe bimetallic MOF glass therefore shows a significantly enhanced oxygen evolution reaction performance. The novel bimetallic MOF glass, when combined with the facile and scalable mechanochemical synthesis technique for both discrete powders and surface coatings on flexible substrates, enables significant opportunities for catalytic device Assembly KW - Electrodes KW - MOF KW - OER KW - XANES KW - XAS KW - Bimetallic frameworks PY - 2022 U6 - https://doi.org/10.1002/anie.202112880 VL - 61 IS - 4 SP - e202112880 PB - Wiley AN - OPUS4-54018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K. J. A1 - Kim, A. S. A1 - Jang, J. S. A1 - Suh, J. K. A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang A1 - Araujo, J. R. A1 - Archanjo, B. S. A1 - Galhardo, C. E. A1 - Damasceno, J. A1 - Achete, C. A. A1 - Wang, H. A1 - Wang, M. A1 - Bennett, J. A1 - Simons, D. A1 - Kurokawa, A. A1 - Terauchi, S. A1 - Fujimoto, T. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Spencer, S. A1 - Shard, A. T1 - Measurement of mole fractions of Cu, In, Ga and Se in Cu(In,Ga)Se2 films N2 - CCQM key comparison K-129 for the quantitative analysis of Cu(In,Ga)Se2 (CIGS) films has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of mole fractions of Cu, In, Ga and Se in a thin CIGS film. The measurand of this key comparison is the average mole fractions of Cu, In, Ga and Se of a test CIGS alloy film in the unit of mole fraction (mol/mol). Mole fraction with the metrological unit of mol/mol can be practically converted to atomic fraction with the unit of at%. In this key comparison, a CIGS film with certified mole fractions was supplied as a reference specimen to determine the relative sensitivity factors (RSFs) of Cu, In, Ga and Se. The mole fractions of the reference specimen were certified by isotope dilution - inductively coupled plasma/mass spectrometry (ID-ICP/MS) and are traceable to the SI. A total number counting (TNC) method was recommended as a method to determine the signal intensities of the constituent elements acquired in the depth profiles by Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Seven NMIs and one DI participated in this key comparison. The mole fractions of the CIGS films were measured by depth profiling based-SIMS, AES and XPS. The mole fractions were also measured by non-destructive X-Ray Fluorescence (XRF) Analysis and Electron Probe Micro Analysis (EPMA) with Energy Dispersive X-ray Spectrometry (EDX). In this key comparison, the average degrees of equivalence uncertainties for Cu, In, Ga and Se are 0.0093 mol/mol, 0.0123 mol/mol, 0.0047 mol/mol and 0.0228 mol/mol, respectively. These values are much smaller than that of Fe in a Fe-Ni alloy film in CCQM K-67 (0.0330 mol/mol). This means that the quantification of multi-element alloy films is possible by depth profiling analysis using the TNC method. KW - CIGS KW - Key comparison KW - CCQM KW - SIMS KW - XPS KW - AES KW - XRF KW - EPMA PY - 2016 UR - http://iopscience.iop.org/article/10.1088/0026-1394/53/1A/08011 U6 - https://doi.org/10.1088/0026-1394/53/1A/08011 SN - 0026-1394 SN - 1681-7575 VL - 53, Technical Supplement SP - Article 08011, 1 EP - 19 PB - IOP Publishing AN - OPUS4-38110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Kim, C.S. A1 - Ruh, S. W. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Mata-Salazar, J. A1 - Juarez-Garcia, J.M. A1 - Cortazar-Martinez, O. A1 - Herrera-Gomez, A. A1 - Hansen, P.E. A1 - Madesen, J.S. A1 - Senna, C.A. A1 - Archanjo, B.S. A1 - Damasceno, J.C. A1 - Achete, C.A. A1 - Wang, H. A1 - Wang, M. A1 - Windover, D. A1 - Steel, E. A1 - Kurokawa, A. A1 - Fujimoto, T. A1 - Azuma, Y. A1 - Terauchi, S. A1 - Zhang, L. A1 - Jordaan, W.A. A1 - Spencer, S.J. A1 - Shard, A.G. A1 - Koenders, L. A1 - Krumrey, M. A1 - Busch, I. A1 - Jeynes, C. T1 - Thickness measurement of nm HfO2 films N2 - A pilot study for the thickness measurement of HfO2 films was performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study was to ensure the equivalency in the measurement capability of national metrology institutes for the thickness measurement of HfO2 films. In this pilot study, the thicknesses of six HfO2 films with nominal thickness from 1 nm to 4 nm were measured by X-ray Photoelectron Spectroscopy (XPS), X-ray Reflectometry(XRR), X-ray Fluorescence Analysis (XRF), Transmission Electron Spectroscopy (TEM), Spectroscopic Ellipsometry (SE) and Rutherford Backscattering Spectrometry (RBS). The reference thicknesses were determined by mutual calibration of a zero-offset method (Medium Energy Ion Scattering Spectroscopy (MEIS) of KRISS) and a method traceable to the length unit (the average thicknesses of three XRR data except the thinnest film). These reference thicknesses are traceable to the length unit because they are based on the traceability of XRR. For the thickness measurement by XPS, the effective attenuation length of Hf 4f electrons was determined. In the cases of XRR and TEM, the offset values were determined from a linear fitting between the reference thicknesses and the individual data by XRR and TEM. The amount of substance of HfO2, expressed as thickness of HfO2 films (in both linear and areal density units), was found to be a good subject for a CCQM key comparison. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM. KW - Thickness measurements KW - nm films KW - X-ray Photoelectron Spectroscopy KW - Mutual calibration PY - 2021 U6 - https://doi.org/10.1088/0026-1394/58/1A/08016 SN - 0026-1394 VL - 58 IS - 1a SP - 08016 PB - IOP Publishing Lt. CY - Bristol AN - OPUS4-54175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Jang, J. S. A1 - Kim, A. S. A1 - Suh, J.K. A1 - Chung, Y.-D. A1 - Hodoroaba, Vasile-Dan A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Kang, H. J. A1 - Popov, O. A1 - Popov, I. A1 - Kuselman, I. A1 - Lee, Y. H. A1 - Sykes, D. E. A1 - Wang, M. A1 - Wang, H. A1 - Ogiwara, T. A1 - Nishio, M. A1 - Tanuma, S. A1 - Simons, D. A1 - Szakal, C. A1 - Osborn, W. A1 - Terauchi, S. A1 - Ito, M. A1 - Kurokawa, A. A1 - Fujiimoto, T. A1 - Jordaan, W. A1 - Jeong, C. S. A1 - Havelund, R. A1 - Spencer, S. A1 - Shard, A. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Eicke, A. A1 - Terborg, R. T1 - CCQM pilot study P-140: Quantitative surface analysis of multi-element alloy films N2 - A pilot study for the quantitative surface analysis of multi-element alloy films has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study is to ensure the equivalency in the measurement capability of national metrology institutes for the quantification of multi-element alloy films. A Cu(In,Ga)Se2 (CIGS) film with non-uniform depth distribution was chosen as a representative multi-element alloy film. The atomic fractions of the reference and the test CIGS films were certified by isotope dilution - inductively coupled plasma/mass spectrometry. A total number counting (TNC) method was used as a method to determine the signal intensities of the constituent elements, which are compared with their certified atomic fractions. The atomic fractions of the CIGS films were measured by various methods, such as Secondary Ion Mass Spectrometry (SIMS), Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), X-Ray Fluorescence (XRF) analysis and Electron Probe Micro Analysis (EPMA) with Energy Dispersive X-ray Spectrometry (EDX). Fifteen laboratories from eight National Metrology Institutes (NMIs), one Designated Institute (DI) and six non-NMIs participated in this pilot study. Although the average atomic fractions of 18 data sets showed rather poor relative standard deviations of about 5.5 % to 6.8 %, they were greatly improved to about 1.5 % to 2.2 % by excluding 5 strongly deviating data sets from the average atomic fractions. In this pilot study, the average expanded uncertainties of SIMS, XPS, AES, XRF and EPMA were 3.84%, 3.68%, 3.81%, 2.88% and 2.90%, respectively. These values are much better than those in the key comparison K-67 for composition of a Fe-Ni alloy film. As a result, the quantification of CIGS films using the TNC method was found to be a good candidate as a subject for a CCQM key comparison. KW - CCQM KW - Pilot study KW - Surface analysis KW - Alloy films KW - CIGS PY - 2015 U6 - https://doi.org/10.1088/0026-1394/52/1A/08017 SN - 0026-1394 SN - 1681-7575 VL - 52 IS - Technical Supplement SP - Article 08017 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-35306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noble, J.E. A1 - Wang, L. A1 - Cerasoli, E. A1 - Knight, A.E. A1 - Porter, R.A. A1 - Gray, E. A1 - Howe, C. A1 - Hannes, E. A1 - Corbisier, P. A1 - Wang, J. A1 - Wu, L. A1 - Altieri, I. A1 - Patriarca, M. A1 - Hoffmann, Angelika A1 - Resch-Genger, Ute A1 - Ebert, B. A1 - Voigt, Jan A1 - Shigeri, Y. A1 - Vonsky, M.S. A1 - Konopelko, L.A. A1 - Gaigalas, A.K. A1 - Bailey, M. J. A. T1 - An international comparability study to determine the sources of uncertainty associated with a non-competitive sandwich fluorescent ELISA KW - ELISA KW - Fluorescence KW - Interferon KW - Uncertainty KW - Round Robin KW - Immunoassay KW - Quality assurance KW - Fluorescein PY - 2008 SN - 1434-6621 SN - 1437-8523 VL - 46 IS - 7 SP - 1033 EP - 1045 PB - De Gruyter CY - Berlin AN - OPUS4-18283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sadowski, A. A1 - Seidel, M. A1 - Al-Lawati, H. A1 - Azizi, E. A1 - Balscheit, Hagen A1 - Böhm, M. A1 - Chen, Lei A1 - van Dijk, I. A1 - Doerich-Stavridis, C. A1 - Kunle Fajuyitan, O. A1 - Filippidis, A. A1 - Winther Fischer, A. A1 - Fischer, C. A1 - Gerasimidis, S. A1 - Karampour, H. A1 - Kathirkamanathan, L. A1 - Subramanian, S. A1 - Topkaya, Cem A1 - Wagner, H. N. R. A1 - Wang, J. A1 - Wang, J. A1 - Kumar Yadav, K. A1 - Yun, X. A1 - Zhang, P. T1 - 8-MW wind turbine tower computational shell buckling benchmark - Part 1: An international ‘round-robin’ exercise N2 - An assessment of the elastic-plastic buckling limit state for multi-strake wind turbine support towers poses a particular challenge for the modern finite element analyst, who must competently navigate numerous modelling choices related to the tug-of-war between meshing and computational cost, the use of solvers that are robust to highly nonlinear behaviour, the potential for multiple near-simultaneously critical failure locations, the complex issue of imperfection sensitivity and finally the interpretation of the data into a safe and economic design. This paper reports on an international ‘round-robin’ exercise conducted in 2022 aiming to take stock of the computational shell buckling expertise around the world which attracted 29 submissions. Participants were asked to perform analyses of increasing complexity on a standardised benchmark of an 8-MW multi-strake steel wind turbine support tower segment, from a linear elastic stress analysis to a linear bifurcation analysis to a geometrically and materially nonlinear buckling analysis with imperfections. The results are a showcase of the significant shell buckling expertise now available in both industry and academia. This paper is the first of a pair. The second paper presents a detailed reference solution to the benchmark, including an illustration of the Eurocode-compliant calibration of two important imperfection forms. KW - Wind turbine tower KW - Computational KW - Shell buckling KW - Benchmark PY - 2023 U6 - https://doi.org/10.1016/j.engfailanal.2023.107124 SN - 1350-6307 VL - 148 SP - 1 EP - 23 PB - Elsevier Science CY - Oxford AN - OPUS4-57019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Opitz, R. A1 - Ghoreishi, N. A1 - Plate, K. A1 - Barnes, J.-P. A1 - Bellew, A. A1 - Bellu, A. A1 - Ceccone, G. A1 - de Vito, E. A1 - Delcorte, A. A1 - Franquet, A. A1 - Fumageli, F. A1 - Gilliland, D. A1 - Jungnickel, H. A1 - Lee, T.G. A1 - Poleunis, C. A1 - Rading, D. A1 - Shon, H.K. A1 - Spampinato, V. A1 - Son, J.G. A1 - Wang, F. A1 - Wang, Y.-C. A. A1 - Zhao, Y. A1 - Roloff, A. A1 - Tentschert, J. A1 - Radnik, Jörg T1 - VAMAS TWA2 interlaboratory comparison: Surface analysis of TiO2 nanoparticles using ToF-SIMS N2 - Due to the extremely high specific surface area of nanoparticles and corresponding potential for adsorption, the results of surface analysis can be highly dependent on the history of the particles, particularly regarding sample preparation and storage. The sample preparation method has, therefore, the potential to have a significant influence on the results. This report describes an interlaboratory comparison (ILC) with the aim of assessing which sample preparation methods for ToF-SIMS analysis of nanoparticles provided the most intra- and interlaboratory consistency and the least amount of sample contamination. The BAM reference material BAM-P110 (TiO2 nanoparticles with a mean Feret diameter of 19 nm) was used as a sample representing typical nanoparticles. A total of 11 participants returned ToF-SIMS data,in positive and (optionally) negative polarity, using sample preparation methods of “stick-and-go” as well as optionally “drop-dry” and “spin-coat.” The results showed that the largest sources of variation within the entire data set were caused by adventitious hydrocarbon contamination or insufficient sample coverage, with the spin-coating protocol applied in this ILC showing a tendency toward insufficient sample coverage; the sample preparation method or the participant had a lesser influence on results. KW - Secondary Ion Mass Spectrometry KW - VMAAS KW - Titania KW - Interlaboratory comparison KW - Reproducibility PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-582290 SN - 0734-2101 VL - 41 IS - 5 SP - 053210-1 EP - 053210-13 PB - AIP (American Institute of Physics) AN - OPUS4-58229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, F. A1 - Wang, C. A1 - Osenberg, M. A1 - Dong, K. A1 - Zhang, S. A1 - Yang, C. A1 - Wang, Y. A1 - Hilger, A. A1 - Zhang, J. A1 - Dong, S. A1 - Markötter, Henning A1 - Manke, I. A1 - Cui, G. T1 - Clarifying the Electro-Chemo-Mechanical Coupling in Li10SnP2S12 based All-Solid-State Batteries N2 - A fundamental clarification of the electro-chemo-mechanical coupling at the solid–solid electrode|electrolyte interface in all-solid-state batteries (ASSBs) is of crucial significance but has proven challenging. Herein, (synchrotron) X-ray tomography, electrochemical impedance spectroscopy (EIS), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), and finite element analysis (FEA) modeling are jointly used to decouple the electro-chemo-mechanical coupling in Li10SnP2S12-based ASSBs. Non-destructive (synchrotron) X-ray tomography results visually disclose unexpected mechanical deformation of the solid electrolyte and electrode as well as an unanticipated evolving behavior of the (electro)chemically generated interphase. The EIS and TOFSIMS probing results provide additional information that links the interphase/electrode properties to the overall battery performance. The modeling results complete the picture by providing the detailed distribution of the mechanical stress/strain and the potential/ionic flux within the electrolyte. Collectively, these results suggest that 1) the interfacial volume changes induced by the (electro)chemical reactions can trigger the mechanical deformation of the solid electrode and electrolyte; 2) the overall electrochemical process can accelerate the interfacial chemical reactions; 3) the reconfigured interfaces in turn influence the electric potential distribution as well as charge transportation within the SE. These fundamental discoveries that remain unreported until now significantly improve the understanding of the complicated electro-chemo-mechanical couplings in ASSBs. KW - All-solid-state batteries KW - Lithium metal batteries KW - Solid electrolytes KW - Sulfide solid electrolytes KW - Synchrotron X-ray tomography PY - 2022 U6 - https://doi.org/10.1002/aenm.202103714 SN - 1614-6832 SP - 2103714 PB - Wiley VHC-Verlag AN - OPUS4-54431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titirici, M. A1 - Baird, S. G. A1 - Sparks, T. D. A1 - Yang, S. M. A1 - Brandt-Talbot, A. A1 - Hosseinaei, O. A1 - Harper, D. P. A1 - Parker, R. M. A1 - Vignolini, S. A1 - Berglund, L. A. A1 - Li, Y. A1 - Gao, H.-L. A1 - Mao, L.-B. A1 - Yu, S.-H. A1 - Díez, N. A1 - Ferrero, G. A. A1 - Sevilla, M. A1 - Szilágyi, P. Á. A1 - Stubbs, C. J. A1 - Worch, J. C. A1 - Huang, Y. A1 - Luscombe, C. K. A1 - Lee, K.-Y. A1 - Luo, H. A1 - Platts, M. J. A1 - Tiwari, D. A1 - Kovalevskiy, D. A1 - Fermin, D. J. A1 - Au, H. A1 - Alptekin, H. A1 - Crespo-Ribadeneyra, M. A1 - Ting, V. P. A1 - Fellinger, Tim-Patrick A1 - Barrio, J. A1 - Westhead, O. A1 - Roy, C. A1 - Stephens, I. E. L. A1 - Nicolae, S. A. A1 - Sarma, S. C. A1 - Oates, R. P. A1 - Wang, C.-G. A1 - Li, Z. A1 - Loh, X. J. A1 - Myers, R. J. A1 - Heeren, N. A1 - Grégoire, A. A1 - Périssé, C. A1 - Zhao, X. A1 - Vodovotz, Y. A1 - Earley, B. A1 - Finnveden, G. A1 - Björklund, A. A1 - Harper, G. D. J. A1 - Walton, A. A1 - Anderson, P. A. T1 - The sustainable materials roadmap N2 - Our ability to produce and transform engineered materials over the past 150 years is responsible for our high standards of living today, especially in the developed economies. Yet, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of economy, energy, and climate. We are at the point where something must drastically change, and it must change NOW. We must create more sustainable materials alternatives using natural raw materials and inspiration from Nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments based on reliable and relevant data to quantify sustainability. KW - Electrochemistry KW - Fe-N-C catalysts KW - Fuel cells KW - Catalysis PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550126 SN - 2515-7639 VL - 5 IS - 3 SP - 1 EP - 98 PB - IOP Publishing CY - Bristol AN - OPUS4-55012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -