TY - JOUR A1 - Redfern, J. A1 - Tucker, J. A1 - Simmons, L. A1 - Askew, P. A1 - Verran, J. A1 - Stephan, Ina T1 - Environmental and experimental factors affecting efficacy testing on nonporous plastic antimicrobial surfaces N2 - Test methods for efficacy assessment of antimicrobial coatings are not modelled on a hospital environment, and instead use high humidity (>90%) high temperature (37 ◦C), and no airflow. Therefore, an inoculum will not dry, resulting in an antimicrobial surface exhibiting prolonged antimicrobial activity, as moisture is critical to activity. Liquids will dry quicker in a hospital ward, resulting in a reduced antimicrobial efficacy compared to the existing test, rendering the test results artificially favourable to the antimicrobial claim of the product. This study aimed to assess how hospital room environmental conditions can affect the drying time of an inoculum, and to use this data to inform test parameters for antimicrobial efficacy testing based on the hospital ward. The drying time of different droplet sizes, in a range of environmental conditions likely found in a hospital ward, were recorded (n = 630), and used to create a model to inform users of the experimental conditions required to provide a drying time similar to what can be expected in the hospital ward. Drying time data demonstrated significant (p < 0.05) variance when humidity, temperature, and airflow were assessed. A mathematical model was created to select environmental conditions for in vitro antimicrobial efficacy testing. Drying time in different environmental conditions demonstrates that experimental set-ups affect the amount of time an inoculum stays wet, which in turn may affect the efficacy of an antimicrobial surface. This should be an important consideration for hospitals and other potential users, whilst future tests predict efficacy in the intended end-use environment. KW - Method development KW - Standardisation KW - Antimicrobial test KW - Environmental conditions KW - Hospital premises PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472699 DO - https://doi.org/10.3390/mps1040036 SN - 2409-9279 VL - 1 IS - 4 SP - 36, 1 EP - 10 PB - MDPI CY - Internet open accsess AN - OPUS4-47269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, J. A1 - Terrell, J. A1 - Ferris, L. A1 - Tucker, D. A1 - Leonhardt, T. A1 - Goldbeck, Hennig T1 - Low-Cost Fabrication of Tungsten-Rhenium Alloys for Friction Stir Welding Applications N2 - Friction stir welding (FSW) of high-melting temperature alloys, such as steel and Inconel, requires tooling that can survive under the applied loads at the elevated temperatures. Tungsten-Rhenium (W-Re) alloys are a suitable candidate for this application; however, the costs typically associated with achieving the required densities and grain structure for the tooling are high due to the lengthy traditional processing required. Further costs are incurred in machining the starting bar stock to the final FSW tooling configuration. An alternate processing method is used in this study to shorten the fabrication time using direct current sintering which rapidly consolidates the starting powders at lower temperatures than used in traditional powder metallurgy. Although this process enables retention of the fine grain size, the sintering time is too short to form the desired single, solid phase. Therefore, the specimens were subjected to a post-consolidation heat treatment to fully solutionize the W matrix. Once the desired density and solid solution phase was verified in coupons, the final processing parameters were used to consolidate a net shape tool for FSW. KW - Tungsten-Rhenium KW - Friction Stir Welding KW - Fabrication PY - 2019 DO - https://doi.org/10.1007/s11663-019-01726-6 VL - 51 IS - 1 SP - 35 EP - 44 PB - Springer AN - OPUS4-50027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -