TY - CONF A1 - Glitzky, Carsten A1 - Rabe, Torsten A1 - Eberstein, Markus A1 - Schiller, Wolfgang Arno A1 - Töpfer, J. A1 - Barth, S. A1 - Kipka, A. T1 - LTCC-modules with integrated ferrite layers - Strategies for material development and co-sintering T2 - CICMT 2008 - 4th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, April 21-24, 2008, Munich, Germany (Proceedings) T2 - 2009 IMAPS/ACerS - 5th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT) CY - Denver, Colorado, USA DA - 2009-04-21 KW - LTCC KW - Ferrite KW - Co-firing KW - Shrinkage KW - Coefficient of thermal expansion (CTE) PY - 2008 SN - 0-930815-83-1 SP - 000058 EP - 000063 AN - OPUS4-18926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Töpfer, J. A1 - Mürbe, J. A1 - Kracunovska, S. A1 - Barth, S. A1 - Pawlowski, B. A1 - Bartnizek, T. A1 - Glitzky, Carsten A1 - Rabe, Torsten T1 - LTCC-compatible multilayer ferrites for integrated inductors T2 - 10th International Conference on Ferrites (Proceedings) T2 - 10th International Conference on Ferrites CY - Chengdu, China DA - 2008-10-10 KW - Hexagonal ferrites KW - Multilayer inductors KW - Ni-Cu-Zn ferrites KW - LTCC KW - Integrated inductors PY - 2008 SP - 147 EP - 150 CY - Chengdu, China AN - OPUS4-19426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Glitzky, Carsten A1 - Naghib Zadeh, Hamid A1 - Oder, Gabriele A1 - Eberstein, M. A1 - Töpfer, J. T1 - Silver in LTCC - Interfacial reactions, transport processes and influence on properties of ceramics T2 - CICMT 2009 - 5th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (Proceedings) T2 - 2009 IMAPS/ACerS - 5th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT) CY - Denver, Colorado, USA DA - 2009-04-21 KW - LTCC KW - Silver conductors KW - Interface KW - Sintering KW - Ferrite KW - Capacitor PY - 2009 SN - 0-930815-87-4 SP - 000085 EP - 000093 AN - OPUS4-19428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Naghib Zadeh, Hamid A1 - Glitzky, C. A1 - Töpfer, J. T1 - Integration of Ni-Cu-Zn ferrite in LTCC-modules T2 - CICMT 2011 - 7th International conference and exhibition on ceramic interconnect and ceramic microsystems technologies (Proceedings) N2 - Integration of magnetic functional components in LTCC Circuit boards calls for co-firing of dielectric and ferrite tapes. Ni-Cu-Zn ferrites with permeability of p=900 were developed which can be fully densified at the Standard LTCC sintering temperature of 900 °C. Successful co-firing of this ferrite with dielectric tapes requires the adaptation of the shrinkage behavior of the materials as well as the thermal expansion during the cooling period - especially in the temperature range below the transformation point of the glassy phase of the dielectric tape. To match these preconditions, a new dielectric LTCC material with steep sintering curve and high thermal expansion coefficient was designed. Sintered multilayer composed of Ni-Cu-Zn ferrite and tailored dielectric tapes are free of cracks and possess no open porosity. No significant interdiffusion between the ferrite and dielectric tapes was found by EDX measurements. Compared to pure ferrite laminates the permeability of co-sintered Ni-Cu-Zn ferrite layers is drastically reduced to 400, i.e. a decrease of more than 50 %. To investigate the origin of this permeability reduction, Ni-Cu-Zn ferrite laminates were sintered separately, and in combination with alumina release tapes or dielectric tapes, respectively. SEM and EDX analysis of co-fired laminates reveal differences in the ferrite grain growth behavior. Ferrite laminates with homogeneous microstructure and grain size up to 50 pm exhibit large permeability. However, growth of ferrite grains does not take place near the interface between ferrite and release or dielectric tapes. There is a strong correlation between high permeability and volume fraction of large ferrite grains. Regions of fine and coarse grains inside the ferrite layers show different bismuth concentration; the Bi-content is larger in regions of fine ferrite grains. T2 - CICMT 2011 - 7th International conference and exhibition on ceramic interconnect and ceramic microsystems technologies CY - San Diego, CA, USA DA - 05.04.2011 KW - LTCC KW - Co-firing KW - Ferrite KW - Shrinkage behavior KW - Constrained sintering KW - Keramische Multilayer KW - Grenzflächenreaktion PY - 2011 SN - 0-930815-92-0 SP - 000266 EP - 000275 PB - IMAPS, International Microelectronics and Packaging Society AN - OPUS4-25072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -