TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Steppan, E. A1 - Kannengießer, Thomas A1 - Steger, J. T1 - Hydrogen trapping in T24 Cr-Mo-V steel weld joints - microstructure effect vs. experimental influence on activation energy for diffusion N2 - Hydrogen-assisted cracking is a critical combination of local microstructure, mechanical load and hydrogen concentration. Welded microstructures of low-alloyed creep-resistant Cr-Mo-V steels show different hydrogen trapping kinetics. This influences the adsorbed hydrogen concentration as well as the diffusion by moderate or strong trapping. A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. Finally, realistic temperature assessment is mandatory for calculation of activation energy via TDA. KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Thermal desorption analysis KW - Welding KW - Microstructure KW - Diffusion PY - 2018 DO - https://doi.org/10.1007/s40194-017-0546-6 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 2 SP - 277 EP - 287 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Schroepfer, Dirk A1 - Steger, J. A1 - Kannengießer, Thomas ED - Seefeldt, M. T1 - Residual stress formation in component related stress relief cracking tests of a welded creep-resistant steel N2 - Submerged arc welded (SAW) components of creep-resistant low-alloyed Cr-Mo-V steels are used for thick-walled heavy petrochemical reactors (wall-thickness up to 475 mm) as well as employed in construction of modern high-efficient fossil fired power plants. These large components are accompanied by significant restraints during welding fabrication, especially at positions of different thicknesses like welding of nozzles. As a result, residual stresses occur, playing a domi-nant role concerning so-called stress relief cracking (SRC) typically during post weld heat treat-ment (PWHT). Besides specific metallurgical factors (like secondary hardening due to re-precipitation), high tensile residual stresses are a considerable influence factor on SRC. For the assessment of SRC susceptibility of certain materials mostly mechanical tests are applied which are isolated from the welding process. Conclusions regarding the influence of mechanical factors are rare so far. The present research follows an approach to reproduce loads, which occur during welding of real thick-walled components scaled to laboratory conditions by using tests designed on different measures. A large-scale slit specimen giving a high restraint in 3 dimensions by high stiffness was compared to a medium-scale multi-pass welding U-profile specimen showing a high degree of restraint in longitudinal direction and a small-scale TIG-re-melted specimen. The small-scale specimens were additionally subjected to mechanical bending to induce loads that are found during fabrication on the real-scale in heavy components. Results show for all three cases compa-rable high tensile residual stresses up to yield strength with high gradients in the weld metal and the heat affected zone. Those high tensile stresses can be significant for cracking during further PWHT. T2 - European Conference on Residual Stresses 2018 - ECRS-10 CY - Leuven, Belgium DA - 11.09.2018 KW - Welding KW - Residual stresses KW - Stress Relief Cracking (SRC) KW - Creep-resistant steel KW - Post Weld Heat Treatment (PWHT) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459683 SN - 978-1-9452-9188-3 SN - 978-1-9452-9189-0 DO - https://doi.org/10.21741/9781945291890-29 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 185 EP - 190 PB - Materials Research Forum LLC CY - Millersville, PA, USA AN - OPUS4-45968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -