TY - JOUR A1 - Recknagel, Sebastian A1 - Scharf, Holger A1 - Lkhagvasuren, B. A1 - Oyuntungalag, U. A1 - Rausch, J. T1 - Certified reference material for determination of total cyanide in soil [BAM-U116/CGL306] N2 - CRM (Certified Reference Material) BAM-U116/CGL306 “Cyanide in soil” was produced within a framework of cooperation between CGL (Central Geological Laboratory) of Mongolia and Federal Institute for Materials Research and Testing (BAM) of Germany in 2013-2017. The CRM BAM-U116/CGL306 represents a mixture of a sandy soil collected from a contaminated former gasworks area in the Berlin region (Germany) and an unpolluted sandy soil from Nalaikh region (Mongolia). The bulk candidate material for this reference material was prepared at CGL CRM Laboratory exclusively destined to the preparation of reference materials and equipped with modern technical equipment. Homogeneity, stability and shelf life were studied in full compliance with ISO Guide 35. The CRM was evaluated as sufficiently homogeneous. Statistical evaluation of certification analysis was software packages SoftCRM and ProLab Plus. Certified value of total cyanide of the CRM is 12.0 mg/kg and expanded uncertainty was assigned as 0.8 mg/kg. The intended purpose of this material is the verification of analytical results obtained for the mass fraction of total cyanide in soils and soil-like materials applying the standardized procedure ISO 11262:2011. As any reference material, it can also be used for routine performance checks (quality control charts) or validation studies. KW - CRM KW - Cyanide in soil KW - Total cyanide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469694 DO - https://doi.org/10.17265/2162-5263/2018.04.004 SP - 149 EP - 161 PB - David Publishing AN - OPUS4-46969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Igartua, A. A1 - Fernández, X. A1 - Areitioaurtena, O. A1 - Luther, R. A1 - Seyfert, C. A1 - Rausch, J. A1 - Illaramendi, I. A1 - Berg, M. A1 - Schultheiß, H. A1 - Duffau, B. A1 - Plouseau, S. A1 - Woydt, Mathias T1 - Biolubricants and triboreactive materials for automotive applications N2 - The research institution TEKNIKER has coordinated the EUROPEAN Project EREBIO, were different biodegradable lubricants have been formulated by FUCHS and BAM for heavy duty engines (GUASCOR), and passenger cars (RENAULT). In the frame of this article, it has been summarised the results obtained when developing biodegradable passenger car lubricants in combination with triboreactive materials. Replacing hydrocarbon-based oils with biodegradable products is one of the ways to reduce adverse effects on the ecosystem caused by the use of lubricants. The application of low or no sulphur, ash and phosphorous (lowSAP) ester- or polyglycol-based oils, intended for passenger car engine lubricants as substitutes for hydrocarbon-based oils, required the preparation of a composition of lubricants with comparable tribological and functional properties. The study is focussed on passenger car motor oils (PCMO) with reduced metal-organic additives. This is necessary in order to reduce the ash build-up in the after treatment system and therefore improve its efficiency and lifetime. High fuel efficiency and long drain intervals are requested, as well. To follow a line in a consequent way, these oils have to be biodegradable and non-toxic to the aqueous environment according to the directive EC/1999/45, coherent with other international standard. In a modern diesel or gasoline engine, the engine oils has to fulfil quite a number of different functions, such as lubricating and cooling the system, wear protection, soot and particle handling with less deposit tendency and so on. In the paper a study of the biodegradability, toxicity and the tribological properties has been carried out for new developed prototype engine bio-oils. Also, some different plasma sprayed triboreactive coatings have been deposited on cast iron piston rings, being studied also their tribological properties. Finally, the behaviour of the new bio-oils selected and plasma sprayed triboreactive coatings on piston rings have been screened in a real engine. T2 - European Conference on Tribology (ECOTRIB) CY - Ljubljana, Slovenia DA - 2007-06-14 KW - Friction KW - Biolubricant KW - Piston ring KW - Bearing KW - Ester KW - Polyglycol PY - 2009 DO - https://doi.org/10.1016/j.triboint.2008.10.015 SN - 0301-679X VL - 42 IS - 4 SP - 561 EP - 568 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-19060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stühler, Merlin R. A1 - Makki, Hesam A1 - Silbernagl, Dorothee A1 - Dimde, Mathias A1 - Ludwig, Kai A1 - Tegner, Bengt E. A1 - Greve, Christopher A1 - Rausch, Konstantin A1 - Herzig, Eva M. A1 - Köhler, Anna A1 - Plajer, Alex J. T1 - Flexibility and Dynamicity Enhances and Controls Supramolecular Self-Assembly of Zinc(II) Metallogels N2 - Supramolecular self-assembly of stacked architectures is typically achieved through hydrogen bonding or π–π interactions between monomers constructed from stable and inert bonds. In contrast, coordinative interactions of early metals promise distinct self-assembly behaviour due to more flexible bonding geometries and a wider range of stabilities and exchange kinetics. In this report we demonstrate that tailoring the flexible coordination sphere of Zinc(II) complexes via subtle ligand modification promotes not only one but also three-dimensional self-assembly both thermodynamically and kinetically into higher-order fibrous morphologies, the latter being elucidated by electron tomography. As a result, coordination chemistry can be translated into both nanoscopic (fibre stiffness) and macroscopic (thermal gel stability) material properties. Utilizing dynamicity enables gelation via subcomponent self-assembly, constructing the supramolecular polymer network simultaneously with the monomer. Furthermore, coordinative dis- and reassembly via metal-ligand exchange reactions involving the first and second coordination spheres allows for control over gelation and emission of the system. Our report links concepts in supramolecular self-assembly and coordination chemistry by leveraging the unique bonding interactions that cannot be achieved for traditional monomers, promising applications in stimuli-responsive optoelectronics. KW - Nanomaterial KW - AFM KW - Organometallic KW - Gel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634221 DO - https://doi.org/10.1002/adfm.202507793 SN - 1616-301X SP - 1 EP - 10 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-63422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Igartua, A. A1 - Fdez-Pérez, X. A1 - Illarramendi, I. A1 - Luther, R. A1 - Rausch, J. A1 - Woydt, Mathias ED - Carmo, J. P. ED - Ribeiro, J. E. T1 - Biolubricants and triboreactive materials for automotive applications N2 - The text deals with passenger car motor oils (PCMO) with reduced metal-organic additives. KW - Biolubricants KW - Passenger car motor oils (PCMO) KW - Automotive KW - Tribology PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464317 SN - 978-9-53510-698-2 DO - https://doi.org/10.5772/46852 SP - 119 EP - 146 PB - INTECH CY - Rijeka, Croatia AN - OPUS4-46431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -