TY - JOUR A1 - Zhang, Zhiyang A1 - Li, Y. A1 - Frisch, J. A1 - Bär, M. A1 - Rappich, J. A1 - Kneipp, Janina T1 - In situ surface-enhanced Raman scattering shows ligand-enhanced hot electron harvesting on silver, gold, and copper nanoparticles JF - Journal of Catalysis N2 - Hot carriers (electrons and holes) generated from the decay of localized surface plasmon resonances can take a major role in catalytic reactions on metal nanoparticles. By obtaining surface enhanced Raman scattering (SERS) spectra of p-aminothiophenol as product of the reduction of p-nitrothiophenol by hot electrons, different catalytic activity is revealed here for nanoparticles of silver, gold, and copper. As a main finding, a series of different ligands, comprising halide and non-halide species, are found to enhance product formation in the reduction reaction on nanoparticles of all three metals. A comparison with the standard electrode potentials of the metals with and without the ligands and SERS data obtained at different electrode potential indicate that the higher catalytic activity can be associated with a higher Fermi level, thereby resulting in an improved efficiency of hot carrier generation. The concept of such a ligand-enhanced hot electron reduction provides a way to make light-to-chemical energy conversion more efficient due to improved electron harvesting. KW - Ligands KW - Hot electrons KW - SERS KW - p-Nitrothiophenol KW - p-Aminothiophenol PY - 2020 DO - https://doi.org/10.1016/j.jcat.2020.01.006 VL - 383 SP - 153 EP - 159 PB - Elsevier Inc. CY - Amsterdam, NL AN - OPUS4-50626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Som, T. A1 - Simo, A. A1 - Fenger, R. A1 - Troppenz, G.V. A1 - Bansen, R. A1 - Pfänder, N. A1 - Emmerling, Franziska A1 - Rappich, J. A1 - Boeck, T. A1 - Rademann, K. T1 - Bismuth hexagons: facile mass synthesis, stability and applications JF - ChemPhysChem N2 - A unique direct electrodeposition technique involving very high current densities, high voltages and high electrolyte concentrations is applied for highly selective mass synthesis of stable, isolable, surfactant-free, single-crystalline Bi hexagons on a Cu wire at room temperature. A formation mechanism of the hexagons is proposed. The morphology, phase purity, and crystallinity of the material are well characterized by FESEM, AFM, TEM, SAED, EDX, XRD, and Raman spectroscopy. The thermal stability of the material under intense electron beam and intense laser light irradiation is studied. The chemical stability of elemental Bi in nitric acid shows different dissolution rates for different morphologies. This effect enables a second way for the selective fabrication of Bi hexagons. Bi hexagons can be oxidized exclusively to α-Bi2O3 hexagons. The Bi hexagons are found to be promising for thermoelectric applications. They are also catalytically active, inducing the reduction of 4-nitrophenol to 4-aminophenol. This electrodeposition methodology has also been demonstrated to be applicable for synthesis of bismuth-based bimetallic hybrid composites for advanced applications. KW - Bismuth KW - Hexagons KW - Dendrites KW - Single-crystal KW - Thermoelectric applications KW - Catalytic applications PY - 2012 DO - https://doi.org/10.1002/cphc.201101009 SN - 1439-4235 VL - 13 IS - 8 SP - 2162 EP - 2169 PB - Wiley-VCH CY - Weinheim AN - OPUS4-26278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Som, Tirtha A1 - Troppenz, G.V. A1 - Wendt, R. R. A1 - Wollgarten, M. A1 - Rappich, J. A1 - Emmerling, Franziska A1 - Rademann, Klaus T1 - Graphene oxide/alpha-Bi2O3 composites for visible-light photocatalysis, chemical catalysis, and solar energy conversion JF - ChemSusChem N2 - The growing challenges of environmental purification by solar photocatalysis, precious-metal-free catalysis, and photocurrent generation in photovoltaic cells receive the utmost global attention. Here we demonstrate a one-pot, green chemical synthesis of a new stable heterostructured, ecofriendly, multifunctional microcomposite that consists of α-Bi2O3 microneedles intercalated with anchored graphene oxide (GO) microsheets (1.0 wt?%) for the above-mentioned applications on a large economical scale. The bare α-Bi2O3 microneedles display two times better photocatalytic activities than commercial TiO2 (Degussa-P25), whereas the GO-hybridized composite exhibits approximately four to six times enhanced photocatalytic activities than the neat TiO2 photocatalyst in the degradation of colored aromatic organic dyes (crystal violet and rhodamine 6G) under visible-light irradiation (300 W tungsten lamp). The highly efficient activity is associated with the strong surface adsorption ability of GO for aromatic dye molecules, the high carrier acceptability, and the efficient electron–hole pair separation in Bi2O3 by individual adjoining GO sheets. The introduction of Ag nanoparticles (2.0 wt?%) further enhances the photocatalytic performance of the composite over eightfold because of a plasmon-induced electron-transfer process from Ag nanoparticles through the GO sheets into the conduction band of Bi2O3. The new composites are also catalytically active and catalyze the reduction of 4-nitrophenol to 4-aminophenol in the presence of borohydride ions. Photoanodes assembled from GO/α-Bi2O3 and Ag/GO/α-Bi2O3 composites display an improved photocurrent response (power conversion efficiency ~20?% higher) over those prepared without GO in dye-sensitized solar cells. KW - Bismuth KW - Dyes/pigments KW - Environmental chemistry KW - Graphene KW - Photochemistry PY - 2014 DO - https://doi.org/10.1002/cssc.201300990 SN - 1864-5631 SN - 1864-564X VL - 7 IS - 3 SP - 854 EP - 865 PB - Wiley-VCH CY - Weinheim AN - OPUS4-30390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -