TY - JOUR A1 - Faghani, A. A1 - Gholami, M. F. A1 - Trunk, M. A1 - Müller, J. A1 - Pachfule, P. A1 - Vogl, S. A1 - Donskyi, Ievgen A1 - Li, M. A1 - Nickl, Philip A1 - Shao, J. A1 - Huang, M. R. S. A1 - Unger, Wolfgang A1 - Arenal, R. A1 - Koch, C. T. A1 - Paulus, B. A1 - Rabe, J. P. A1 - Thomas, A. A1 - Haag, R. A1 - Adeli, M. T1 - Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale N2 - Covalent triazine frameworks are an emerging material class that have shown promising performance for a range of applications. In this work, we report on a metal-assisted and solvent-mediated reaction between calcium carbide and cyanuric chloride, as cheap and commercially available precursors, to synthesize two-dimensional triazine structures (2DTSs). The reaction between the solvent, dimethylformamide, and cyanuric chloride was promoted by calcium carbide and resulted in dimethylamino-s-triazine intermediates, which in turn undergo nucleophilic substitutions. This reaction was directed into two dimensions by calcium ions derived from calcium carbide and induced the formation of 2DTSs. The role of calcium ions to direct the two-dimensionality of the final structure was simulated using DFT and further proven by synthesizing molecular intermediates. The water content of the reaction medium was found to be a crucial factor that affected the structure of the products dramatically. While 2DTSs were obtained under anhydrous conditions, a mixture of graphitic material/2DTSs or only graphitic material (GM) was obtained in aqueous solutions. Due to the straightforward and gram-scale synthesis of 2DTSs, as well as their photothermal and photodynamic properties, they are promising materials for a wide range of future applications, including bacteria and virus incapacitation. KW - XPS KW - Triazine KW - 2D PY - 2020 U6 - https://doi.org/10.1021/jacs.0c02399 VL - 142 IS - 30 SP - 12976 EP - 12986 PB - ACS American Chemical Society AN - OPUS4-51203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Antoni, S. A1 - Clemens, J. A1 - Kunath, K. A1 - Rabe, J. A1 - Simon, K. A1 - Uhlig, S. A1 - Wehrstedt, Klaus-Dieter T1 - Evaluation of the 3rd round robin on solid oxidizer test (UN O.1) with calcium peroxide, sodium nitrate, sodium perborate monohydrate N2 - The classification of solid oxidizers according to the regulations on the transport of dangerous goods (based on the UN Recommendations/Model Regulations and accepted by all international organisations for the transport of dangerous goods as ADR, IMO, IATA) and in future also according to the GHS (Globally Harmonized System of Classification and Labelling of Chemicals) is performed on the basis of the results of the UN test O.1 (UN test O.1 ―Test for oxidizing solids‖ described in chapter 34.4.1 in the Recommendations on the Transport of Dangerous Goods – Manual of Tests and Criteria, see [1]). This test was introduced into the UN Manual of Tests and Criteria in 1995 as a replacement for a similar test from 1986. Even if the UN O.1 test as described in the current 5th revised edition of UN Manual of Tests and Criteria gives some improvements compared to the old test, which had had many deficiencies, there are still some problems left with this test in terms of e.g. repeatability or reproducibility of test results, how to handle compacted or multilayer formulations like tablets, toxicity and partly significantly varying particle size distribution within defined fractions of 150 μm to 300 μm of the reference oxidizer potassium bromate (KBrO3). For this reason the IGUS EOS working group installed an ad-hoc working group in 2002 assigned with the task to propose solutions for the existing problems. The appropriateness of such proposed solutions has to be proved by the method of interlaboratory (round robin) tests before they are presented for the adoption to the UN Committee of Experts on the TDG and on the GHS with a proposal of a completely revised test procedure. KW - Round robin KW - Solid oxidizer test KW - United Nations KW - IGUS KW - EOS KW - Calcium peroxide KW - Sodium nitrate KW - Sodium perborate monohydrate PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-232246 SN - 978-3-9813853-7-3 IS - Final Report, 2009 - 2011 SP - 1 EP - 192 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-23224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Töpfer, J. A1 - Hesse, J. A1 - Bierlich, S. A1 - Barth, S. A1 - Capraro, B. A1 - Rabe, Torsten A1 - Naghib Zadeh, Hamid A1 - Bartsch, H. T1 - Integration of Ni-Cu-Zn and hexagonal ferrites into LTCC modules: Cofiring strategies and magnetic properties N2 - We have studied the integration of Ni-Cu-Zn ferrite spinels as well as substituted hexagonal Co2Y-and M-type ferrites into LTCC (Low Temperature Ceramic Co-firing) modules. The cofiring behavior and the magnetic properties of these materials were investigated and evaluated for multilayer applications. Ni-Cu-Zn ferrites exhibit permeabilities of µ=300–500 for operating frequencies in the MHz range. Cu-substituted Y-type ferrites Ba2Co2-x-yZnxCuyFe12O22 in combination with sintering additives display sufficient shrinkage and densification at 900°C. A permeability of µ=10 is observed; however, substituted Co2Y-type ferrites do not exhibit long-term stability at 900°C. Co/Ti-substituted M-type ferrites BaFe12-2yCoyTiyO19 (y=1.2) with planar magneto-crystalline anisotropy exhibit excellent soft magnetic behavior. Using sintering additives, complete densification is reached at 900°C and a permeability of µ=15 and a resonance frequency of larger than 1?GHz are observed. Integration of ferrite multilayer inductor components into LTCC modules using free and constrained cofiring technologies is demonstrated. KW - Ferrites KW - Cofiring KW - LTCC modules KW - Permeability PY - 2014 UR - https://www.jstage.jst.go.jp/article/jjspm/61/S1/61_S214/_pdf U6 - https://doi.org/10.2497/jjspm.61.S214 SN - 0532-8799 SN - 1880-9014 VL - 61 SP - Suppl. S1, S214 EP - S217 PB - Ky¯okai CY - Ky¯oto AN - OPUS4-31045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Töpfer, J. A1 - Mürbe, J. A1 - Kracunovska, S. A1 - Barth, S. A1 - Pawlowski, B. A1 - Bartnizek, T. A1 - Glitzky, Carsten A1 - Rabe, Torsten T1 - LTCC-compatible multilayer ferrites for integrated inductors T2 - 10th International Conference on Ferrites CY - Chengdu, China DA - 2008-10-10 KW - Hexagonal ferrites KW - Multilayer inductors KW - Ni-Cu-Zn ferrites KW - LTCC KW - Integrated inductors PY - 2008 SP - 147 EP - 150 CY - Chengdu, China AN - OPUS4-19426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naghib-zadeh, H. A1 - Oder, Gabriele A1 - Hesse, J. A1 - Reimann, T. A1 - Töpfer, J. A1 - Rabe, Torsten T1 - Effect of oxygen partial pressure on co-firing behavior and magnetic properties of LTCC modules with integrated NiCuZn ferrite layers N2 - Low-κ dielectric LTCC was developed, to realize successful co-firing with NiCuZn ferrite tapes. A critical high-temperature process in the production of highly integrated LTCC modules is the migration of silver from inner conductors into the LTCC glass phase. Intensive silver migration causes strong deformation of LTCC multilayers during firing in air. Silver migration into the LTCC glass phase depends on oxygen content of the sintering atmosphere and can be minimized by sintering in nitrogen atmosphere. However, partial decomposition of NiCuZn-ferrite and formation of cuprite was observed during sintering in nitrogen and, consequently, the permeability of the ferrite decreases. As shown by a combined XRD/thermogravimetric study the co-firing of LTCC modules with silver metallization and integrated ferrite layer demands precise adjustment of oxygen partial pressure. KW - Ferrite KW - Silver diffusion KW - Co-firing KW - LTCC PY - 2016 U6 - https://doi.org/10.1007/s10832-016-0043-0 SN - 1385-3449 SN - 1573-8663 VL - 37 IS - 1-4 SP - 100 EP - 109 PB - Springer Science+Business Media CY - New York AN - OPUS4-38603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hesse, J. A1 - Naghib-zadeh, H. A1 - Rabe, Torsten A1 - Töpfer, J. T1 - Integration of additive-free Ni–Cu–Zn ferrite layers into LTCC multilayer modules N2 - The sintering behavior of sub-micron Ni0.30Cu0.20Zn0.52Fe1.98O3.99 ferrite with and without Bi2O3 addition was studied. Ferrites with 0.5 wt% Bi2O3 exhibit enhanced shrinkage at T < 900 °C with significant grain growth. Additive-free ferrite powders also sinter to high density at 900 °C, however, grain growth is very limited. Both ferrites exhibit a permeability of µ = 400–450. Multilayers consisting of ferrite and low-k dielectric LTCC layers were prepared by co-firing at 900–915 °C. The shrinkage and thermal expansion characteristics of ferrite and LTCC tapes are similar. However, the permeability of integrated ferrite layers, made from ferrite tapes with Bi2O3 additive, significantly drops after co-firing with LTCC layers compared to separately fired monolithic ferrite multilayers. Contrarily, the permeability of integrated, Bi2O3-free ferrite layers, co-fired with dielectric tapes, is identical to that of monolithic ferrite multilayers. This finding is an important step toward ferrite integration into complex LTCC multilayer architectures. KW - LTCC KW - Ferrite integration KW - Multilayer KW - Sintering PY - 2016 U6 - https://doi.org/10.1016/j.jeurceramsoc.2016.02.016 SN - 0955-2219 VL - 36 IS - 8 SP - 1931 EP - 1937 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-36001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bjeoumikhov, A. A1 - Arkadiev, V. A1 - Eggert, F. A1 - Hodoroaba, Vasile-Dan A1 - Langhoff, N. A1 - Procop, Mathias A1 - Rabe, J. A1 - Wedell, R. T1 - A new microfocus x-ray source, iMOXS, for highly sensitive XRF analysis in scanning electron microscopes N2 - Scanning electron microscopes are usually equipped with energy-dispersive X-ray detectors for electron probe microanalysis. This widespread analytical method allows investigators to determine the elemental composition of specimens with a spatial resolution of about 1 µm. However, owing to the electron-specimen interaction, the emitted spectra reveal, in addition to characteristic lines, also a high level of continuous bremsstrahlung background. As a result, elements with low concentrations cannot be identified. The minimum detection limit can be diminished by two orders of magnitude if the characteristic lines are excited as fluorescence by an additional x-ray source. In this case, the emergence of bremsstrahlung is considerably reduced. Combining a high-brilliance microfocus x-ray tube with efficient polycapillary optics enables one to realize an experimental arrangement for performing local fluorescence analysis at the same point where the electron beam hits the sample. The polycapillary optics under consideration focuses the emitted x-radiation onto focal spots between 30 and 100 µm in diameter. Count rates of several thousands cps have been achieved. Elemental maps have been obtained by means of the motorized specimen stage of the microscope. Copyright © 2005 John Wiley & Sons, Ltd. KW - Micro-XRF KW - Microfocus x-ray source KW - EPMA KW - SEM PY - 2005 U6 - https://doi.org/10.1002/xrs.872 SN - 0049-8246 VL - 34 IS - 6 SP - 493 EP - 497 PB - Wiley CY - Chichester AN - OPUS4-11228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn A1 - Gemeinert, Marion A1 - Rabe, Torsten A1 - Bolte, J. T1 - Low-temperature co-fired ceramic substrates for high-performance strain gauges N2 - Recent advances in the development of high gauge factor thin films for strain gauges prompt the research on advanced substrate materials. A glass ceramic composite has been developed in consideration of a high coefficient of thermal expansion (9.4 ppm/K) and a low modulus of elasticity (82 GPa) for the application as support material for thin-film sensors. In the first part, constantan foil strain gauges were fabricated from this material by tape casting, pressure-assisted sintering, and subsequent lamination of the metal foil on the planar ceramic substrates. The accuracy of the assembled load cells corresponds to accuracy class C6. That qualifies the load cells for the use in automatic packaging units and confirms the applicability of the low-temperature co-fired ceramic (LTCC) substrates for fabrication of accurate strain gauges. In the second part, to facilitate the deposition of thin-film sensor structures to the LTCC substrates, pressure-assisted sintering step is modified using smooth setters instead of release tapes, which resulted in fabrication of substrates with low average surface roughness of 50 nm. Titanium thin films deposited on these substrates as test coatings exhibited low surface resistances of 850 Ω comparable to thin films on commercial alumina thin-film substrates with 920 Ω. The presented material design and advances in manufacturing technology are important to promote the development of high-performance thin-film strain gauges. KW - LTCC KW - Thin-film substrate KW - Strain gauge PY - 2013 U6 - https://doi.org/10.1111/ijac.12052 SN - 1546-542X SN - 1744-7402 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. VL - 10 IS - 3 SP - 413 EP - 420 PB - American Ceramic Soc. CY - Westerville, Ohio AN - OPUS4-28301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Naghib Zadeh, Hamid A1 - Glitzky, C. A1 - Töpfer, J. T1 - Integration of Ni-Cu-Zn ferrite in LTCC-modules N2 - Integration of magnetic functional components in LTCC Circuit boards calls for co-firing of dielectric and ferrite tapes. Ni-Cu-Zn ferrites with permeability of p=900 were developed which can be fully densified at the Standard LTCC sintering temperature of 900 °C. Successful co-firing of this ferrite with dielectric tapes requires the adaptation of the shrinkage behavior of the materials as well as the thermal expansion during the cooling period - especially in the temperature range below the transformation point of the glassy phase of the dielectric tape. To match these preconditions, a new dielectric LTCC material with steep sintering curve and high thermal expansion coefficient was designed. Sintered multilayer composed of Ni-Cu-Zn ferrite and tailored dielectric tapes are free of cracks and possess no open porosity. No significant interdiffusion between the ferrite and dielectric tapes was found by EDX measurements. Compared to pure ferrite laminates the permeability of co-sintered Ni-Cu-Zn ferrite layers is drastically reduced to 400, i.e. a decrease of more than 50 %. To investigate the origin of this permeability reduction, Ni-Cu-Zn ferrite laminates were sintered separately, and in combination with alumina release tapes or dielectric tapes, respectively. SEM and EDX analysis of co-fired laminates reveal differences in the ferrite grain growth behavior. Ferrite laminates with homogeneous microstructure and grain size up to 50 pm exhibit large permeability. However, growth of ferrite grains does not take place near the interface between ferrite and release or dielectric tapes. There is a strong correlation between high permeability and volume fraction of large ferrite grains. Regions of fine and coarse grains inside the ferrite layers show different bismuth concentration; the Bi-content is larger in regions of fine ferrite grains. T2 - CICMT 2011 - 7th International conference and exhibition on ceramic interconnect and ceramic microsystems technologies CY - San Diego, CA, USA DA - 05.04.2011 KW - LTCC KW - Co-firing KW - Ferrite KW - Shrinkage behavior KW - Constrained sintering KW - Keramische Multilayer KW - Grenzflächenreaktion PY - 2011 SN - 0-930815-92-0 SP - 000266 EP - 000275 PB - IMAPS, International Microelectronics and Packaging Society AN - OPUS4-25072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naghib Zadeh, Hamid A1 - Rabe, Torsten A1 - Toepfer, J. A1 - Karmazin, R. T1 - Co-firing of LTCC modules with embedded ferrite layers N2 - Further miniaturization of electronic packaging calls for integration of magnetic functional components into LTCC modules. For integration of magnetic function into LTCC, low fired MnZn- and NiCuZn-ferrites which can be fully densified at the standard LTCC sintering temperature of 900°C were developed. To co-fire these ferrite tapes with dielectric tapes the sintering shrinkage and the coefficient of thermal expansion of ferrite and dielectric tapes must be matched. For each ferrite material a new LTCC dielectric material was designed. The embedded ferrite tapes into new LTCC dielectric tapes can be sufficiently densified during co-firing at 900°C without any cracking. Compared to separately sintered ferrites the permeability of embedded ferrite tapes is reduced. For embedded NiCuZn ferrites permeabilities between 230 and 570 (at 2 MHz) according to the thickness of the embedded ferrite layer were measured. For embedded MnZn ferrites a permeability of 300 was measured. T2 - EMPC-2011 - 18th European microelectronics & packaging conference CY - Brighton, UK DA - 12.09.2011 KW - LTCC KW - Co-firing KW - Ferrite PY - 2011 SN - 978-0-9568086-0-8 IS - TuA2 SP - 1 EP - 6 AN - OPUS4-25021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -