TY - CONF A1 - Schischke, K. A1 - Rückschloss, J. A1 - Schlegel, Moritz-Caspar A1 - Zöllinger, J. A1 - Nisse, N. F. A1 - Schneider-Ramelow, M. T1 - The European Union’s Energy Label for Smartphones: Does it guide consumers to make environmentally sustainable choices? T2 - Proceedings 2023 IEEE 13th International Conference on Consumer Electronics N2 - The European Commission adopted an EU Energy Label for smartphones and tablets in June 2023. For the first time, the EU Energy Label will depict, among energy efficiency, also a reparability score, battery endurance, battery lifetime, drop resistance and dust and water ingress protection. However, does the multitude of parameters bear the risk to confuse consumers instead of triggering environmentally sustainable purchase decisions? In a survey in Germany, consumers were asked to make a choice when the label does not clearly identify the environmentally better product. Instead, energy efficiency has to be valued against reparability, reliability against energy efficiency, and reparability against reliability. The sustainability lever of the different aspects is not the same, as e.g. lifetime extension has a much more positive environmental impact than energy efficiency in case of mobile devices. Therefore, the question remains, whether consumers intuitively make the right choice. Results of the survey indicate that consumers interpret the complex label in the desired manner and value those aspects higher, which indeed have a more positive effect on the environment. T2 - 2023 IEEE 13th International Conference on Consumer Electronics CY - Berlin, Germany DA - 03.09.2023 KW - Circular Economy KW - Kreislaufwirtschaft KW - policy making KW - EU Energy Labelling KW - Smartphone PY - 2023 SP - 1 EP - 6 AN - OPUS4-58177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rückschloss, J. A1 - Schischke, K. A1 - Berwald, A. A1 - Schlegel, Moritz-Caspar T1 - Pandemic-related behavioural changes – does EU Ecodesign policy making need to react? T2 - eceee Summer Study Proceedings N2 - The global COVID-19 pandemic has brought far-reaching changes for our society. Suddenly, millions of people spent the majority of their time at home - either due to a lock down or by switching from office to working remotely. This paper offers a literature review regarding pandemic-related behavioural changes and a first mapping of likely consequences for EU Ecodesign regulations. These impacts are considered for product groups that are already regulated by EU Ecodesign or are under discussion for future regulation. Furthermore, potential for smart home applications are analysed exemplarily. We identified which behavioural changes have the potential to become established in the long-term. This might need to result in adaptions for regulations under the Ecodesign Directive and EU-Energy Labelling regulations to better reflect the recently appeared usage profiles. It might require different priority settings regarding the product groups to be regulated and communicated to users, due to online shopping proliferation, to be updated. Changed behaviour can be observed in product groups such as ICT, consumer electronics and household appliances. Examples include the increased use of laptops and tablets for digital teaching, use of gaming devices and office equipment in private households (IT, printing and network devices) and changed cooking behaviour. This resulted in increased sales of some product types. Online sales became even more important than in-store sales, which also means that consumers are increasingly informed online about energy efficiency. More do-it-yourself (DIY) home projects result in more frequent - not yet regulated - DIY power tool use and over the long run might stimulate the need for (semi-)professional tools. The changes in behaviour patterns also offer the opportunity to optimize consumption by means of smart homes and smart products. However, the control of networked household appliances requires additional energy for standby states and data exchange. As an illustrative example, we discuss the conflict between higher energy consumption for smart system components and the possible optimization of consumption in private households. T2 - ECEEE 2022 SUMMER STUDY CY - Hyères, France DA - 06.06.2022 KW - Ecodesign KW - Energy Labelling KW - Circular Economy KW - Pandemic KW - Behavioural change PY - 2022 UR - https://www.eceee.org/static/media/uploads/site-2/summerstudy2022/pdfs_docs/panel8-papers.zip SP - 1237 EP - 1244 AN - OPUS4-55509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rückschloss, J. A1 - Schischke, K. A1 - Schlegel, Moritz-Caspar A1 - Jonathan, Z. T1 - Too much information? Which labelled product property influences customers' purchasing decisions most T2 - Proceedings PLATE 2023 Conference N2 - The individual willingness to pay for sustainable products is significantly influenced by the climate crisis, but is also affected due to additional international crises as the still ongoing pandemic and the war in Ukraine. The better a product labelling is designed, the more likely consumers are to make a well-considered purchase decision at the point-of-sale, which in turn increases the product lifetime of the devices. The results of this study are based on two consumer surveys with a total of 590 participants. Consumers were asked to make a simulated purchase decision based on the upcoming EU Energy Label for smartphones. Each consumer was presented comparison labels showing different aspects concerning durability (meaning charging cycles, robustness and IP class), repairability, energy efficiency and product price. In addition, there was a question on energy consumption, which was displayed either in Wh/h or in battery endurance per charge in hours. The analysis of the survey shows a clear ranking of the preferred properties: 1. Durability as best option, Energy efficiency and Repairability as second and third choice. In all categories, a higher price was accepted in favor of a more environmentally friendly product design. When presenting the energy consumption in Wh/h, no reliable distinguishing between higher or lower values was observed. In contrast, higher values were clearly preferred when choosing between different battery runtimes. Recommendations will be developed for adjustments to the upcoming EU Energy Label for smartphones and other product labels in the future showing circular economy aspects, such as the durability, repairability, recycled content used during production, recyclability or the total footprint of the product. T2 - PLATE Product Lifetime and the Environment Conference 2023 CY - Espoo, Finland DA - 31.05.2023 KW - EU Energy Labelling KW - Circular Economy KW - Policy making KW - Electronics KW - Smartphone PY - 2023 SP - 1 EP - 7 AN - OPUS4-57612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -