TY - JOUR A1 - Zhao, J. A1 - Hu, Y. A1 - wei Lin, S. A1 - Resch-Genger, Ute A1 - Zhang, R. A1 - Wen, J. A1 - Kong, X. A1 - Qin, A. A1 - Ou, J. T1 - Enhanced luminescence intensity of near-infraredsensitized sensitized upconversion nanoparticles via Ca²+ doping for a nitric oxide release platform N2 - Light-induced NO release based on exogenous NO donors has attracted substantial attention in clinical applications; the induction light source usually converts near-infrared light to blue or ultraviolet light. However, the low efficiency of near-infrared light-assisted chemical light energy conversion remains a challenge, especially for NaYF4:Yb3+/Tm3+ photoconverting near-infrared light to ultraviolet (UV) and blue light. In this paper, a luminescence-enhanced strategy is reported by doping Ca2+ into NaYF4:Yb3+/Tm3+ and coating it with NaGdF4 through a two-step solvothermal method. Then, UCNPs modified with methyl-b-cyclodextrin (M-b-CD) are loaded on a ruthenium nitrosyl complex [(3)Ru(NO)(Cl)] as nitric oxide release-molecules (NORMs). X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) data demonstrated that Ca2+ was successfully doped into NaYF4:Yb3+/Tm3+ nanoparticles as the core, and a pure hexagonal phase, NaYF4, was obtained from the doping of Ca2+. TEM revealed that the crystallinity was significantly improved after Ca2+ doping, and the core–shell structure was successfully synthesized, with NaGdF4 directionally grown on the NaYF4:Ca/Yb/Tm core. Fluorescence tests showed that, especially in the ultraviolet and blue light excitation wavelength regions, the UC emission intensity of the Ca-doped NaYF4:Yb3+/Tm3+@NaGdF4 core–shell UCNPs increased by 302.95 times vs. NaYF4:Yb3+/Tm3+ UCNPs. Finally, the release of NO was tested by the Griess method. Under 980 nm irradiation, the cell viability distinctly decreased with increasing UCNPs@M-b-CD-NORMs concentration. This study Shows that NORM release of NO is triggered by enhanced up-converted UV and blue light, which can be used for the development of UV photo-sensitive drugs. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - PDT PY - 2020 DO - https://doi.org/10.1039/d0tb00088d VL - 8 IS - 30 SP - 6481 EP - 6489 PB - Journal of Materials Chemistry B AN - OPUS4-51262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, P. A1 - Ye, S. A1 - Qin, L. A1 - Huang, Y. A1 - Yang, J. A1 - Yu, L. A1 - Wu, Dejian T1 - Experimental study on the maximum excess ceiling gas temperature generated by horizontal cable tray fires in urban utility tunnels N2 - Safety concerns on cable tray fires in urban utility tunnels, which may further trigger huge casualties, ceiling structure damages, power failures and other domino effects, attract increasing attention in recent years. Determining the maximum excess ceiling gas temperature (MECT) induced by cable tray fires in urban utility tunnels is crucial to evaluate the fire risks. A series of one-layer horizontal cable tray fire experiments to explore the MECT were carried out in a large-scale utility tunnel without mechanical ventilations. The number of cables on the tray was varied from 8 to 18 in the experiments. The experimental results showed that the cable tray fire burning could be divided into three distinct stages, including ignition, self-sustaining and decaying stages. In the self-sustaining combustion stage, the cable tray was found to burn relatively steady. The mean MECT was also investigated since it represents one of the main characteristics of the cable tray fire. By redefining two parameters (the heat release rate and the effective ceiling height) in three classical MECT models proposed originally based on pool-fire, these three models could be extended to be able to predict the mean MECT generated from the cable tray fire (solid combustible) within 20% deviations. Consequently, two novel models were respectively proposed to predict the mean MECT at the self-sustaining burning period and the instantaneous MECT of one-layer horizontal cable tray fire in utility tunnel, which would be useful in the field of fire protection engineering. KW - Urban utility tunnel KW - Cable tray fire KW - MECT KW - Heat release rate KW - Tunnel fire PY - 2021 DO - https://doi.org/10.1016/j.ijthermalsci.2021.107341 SN - 1290-0729 VL - 172, Part B SP - 1 EP - 10 PB - Elsevier Masson SAS AN - OPUS4-55056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fa, X. A1 - Lin, Sh. A1 - Yang, J. A1 - Shen, Ch. A1 - Liu, Y. A1 - Gong, Y. A1 - Qin, A. A1 - Ou, Jun A1 - Resch-Genger, Ute T1 - −808 nm-activated Ca2+ doped up-conversion nanoparticles that release no inducing liver cancer cell (HepG2) apoptosis N2 - Anear-infrared (NIR) light-triggered release method for nitric oxide (NO) was developed utilizing core/shell NaYF4: Tm/Yb/Ca@NaGdF4:Nd/Yb up-conversion nanoparticles (UCNPs) bearing a mesoporous silica (mSiO2) shell loaded with theNOdonor S-nitroso-N-acetyl-DL-penicillamine (SNAP). To avoid overheating in biological samples, Nd3+ was chosen as a sensitizer, Yb3+ ions as the bridging sensitizer, andTm3+ ions as UV-emissive activator while co-doping with Ca2+ was done to enhance the luminescence of the activatorTm3+.NOrelease from SNAP was triggered by an NIR-UV up-conversion process, initiated by 808nmlight absorbed by the Nd3+ ions.NOrelease was confirmed by the Griess method. Under 808nmirradiation, the viability of the liver cancer cell line HepG2 significantly decreased with increasing UCNPs@mSiO2-SNAP concentration. For a UCNPs@mSiO2-SNAP concentration of 200 μgml−1, the cell survival probability was 47%. These results demonstrate that UCNPs@mSiO2-SNAP can induce the release of apoptosis-inducingNOby NIR irradiation. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Triggered KW - Release KW - Cell KW - PDT KW - Dye KW - Therapy KW - Surface KW - Coating PY - 2022 DO - https://doi.org/10.1088/2050-6120/ac5524 VL - 10 IS - 2 SP - 1 EP - 9 PB - IOP Publishing AN - OPUS4-54842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, W.-H. A1 - Qin, J. A1 - Lu, D.-G. A1 - Thöns, Sebastian A1 - Havbro Faber, M. T1 - Vol-informed decision-making for SHM system arrangement N2 - Structural health monitoring systems have been widely implemented to provide real-time continuous data support and to ensure structural safety in the context of structural integrity management. However, the quantification of the potential benefits of structural health monitoring systems has not yet attracted widespread attention. At the same time, there is an urgent need to develop strategies, such as optimizing the monitoring period, monitoring variables, and other factors, to maximize the potential benefits of structural health monitoring systems. Considering the continuity of structural health monitoring information, a framework is developed in this article to support decision-making for structural Health monitoring systems arrangement in the context of structural integrity management, which integrates the concepts of value of information and risk-based inspection planning based on an approach which utilizes a conjugate prior probability distribution for updating of the probabilistic models of structural performances based on structural health Monitoring information. An example considering fatigue degradation of steel structures is investigated to illustrate the application of the proposed framework. The considered example shows that the choice of monitoring variables, the Monitoring period, and the monitoring quality may be consistently optimized by the application of the proposed framework and approach. Finally, discussions and conclusions are provided to clarify the potential benefits of the proposed Framework with a special view to practical applications of structural health monitoring systems. KW - Value of information KW - Structural health monitoring systems arrangement strategy KW - Structural integrity management KW - Rskbased inspection KW - Structural health monitoring information model PY - 2020 DO - https://doi.org/10.1177/1475921720962736 SN - 1475-9217 VL - 21 IS - 1 SP - 37 EP - 58 PB - SAGE Journals CY - USA AN - OPUS4-53064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -