TY - JOUR A1 - Sprachmann, J. A1 - Grabicki, N. A1 - Möckel, Anna A1 - Maltitz, J. A1 - del Refugio Monroy Gómez, J. A1 - Smales, Glen Jacob A1 - Dumele, O. T1 - Substituted Benzophenone Imines for COF Synthesis via Formal Transimination N2 - Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - General Chemistry KW - Ceramics and Composites KW - Electronic, Optical and Magnetic Materials KW - Catalysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586449 DO - https://doi.org/10.1039/D3CC03735E SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Monroy, J. A1 - Lilienthal, A. J. T1 - A realistic remote gas sensor model for three-dimensional olfaction simulations N2 - Remote gas sensors like those based on the Tunable Diode Laser Absorption Spectroscopy (TDLAS) enable mobile robots to scan huge areas for gas concentrations in reasonable time and are therefore well suited for tasks such as gas emission surveillance and environmental monitoring. A further advantage of remote sensors is that the gas distribution is not disturbed by the sensing platform itself if the measurements are carried out from a sufficient distance, which is particularly interesting when a rotary-wing platform is used. Since there is no possibility to obtain ground truth measurements of gas distributions, simulations are used to develop and evaluate suitable olfaction algorithms. For this purpose several models of in-situ gas sensors have been developed, but models of remote gas sensors are missing. In this paper we present two novel 3D ray-tracer-based TDLAS sensor models. While the first model simplifies the laser beam as a line, the second model takes the conical shape of the beam into account. Using a simulated gas plume, we compare the line model with the cone model in terms of accuracy and computational cost and show that the results generated by the cone model can differ significantly from those of the line model. T2 - 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) CY - Fukuoka, Japan DA - 26.05.2019 KW - Remote gas sensor KW - Gas detector KW - TDLAS KW - Sensor modelling PY - 2019 SN - 978-1-5386-8327-9 SN - 978-1-5386-8328-6 DO - https://doi.org/10.1109/ISOEN.2019.8823330 SP - 1 EP - 3 PB - IEEE AN - OPUS4-48919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -