TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Miller, A. Z. A1 - Garcia-Sanchez, A. M. A1 - Martin-Sanchez, Pedro Maria A1 - F.C. Pereira, M. A1 - Afonso, M. J. A1 - Saiz-Jimenez, C. A1 - Spangenberg, J. E. A1 - Jurado, V. A1 - Dionísio, A. A1 - Chaminé, H. I. A1 - Hermosin, B. T1 - Origin of abundant moonmilk deposits in a subsurface granitic environment N2 - Subsurface granitic environments are scarce and poorly investigated. A multi-disciplinary approach was used to characterize the abundant moonmilk deposits and associated microbial communities coating the granite walls of the 16th Century Paranhos spring water tunnel in Porto city (north-west Portugal). It is possible that this study is the first record of moonmilk in an urban subsurface granitic environment. The morphology and texture, mineralogical composition, stable isotope composition and microbial diversity of moonmilk deposits have been studied to infer the processes of moonmilk formation. These whitish secondary mineral deposits are composed of very fine needle fibre calcite crystals with different morphologies and density. Calcified filaments of fungal hyphae or bacteria were distinguished by field emission scanning electron microscopy. Stable isotope analysis revealed a meteoric origin of the needle fibre calcite, with an important contribution of atmospheric CO2, soil respiration and HCO3 − from weathering of Ca-bearing minerals. The DNA-based analyses revealed the presence of micro-organisms related to urban contamination, including Actinobacteria, mainly represented by Pseudonocardia hispaniensis, Thaumarchaeota and Ascomycota, dominated by Cladosporium. This microbial composition is consistent with groundwater pollution and contamination sources of the overlying urban area, including garages, petrol stations and wastewater pipeline leakage, showing that the Paranhos tunnel is greatly perturbed by anthropogenic activities. Whether the identified micro-organisms are involved in the formation of the needle fibre calcite or not is difficult to demonstrate, but this study evidenced both abiotic and biogenic genesis for the calcite moonmilk in this subsurface granitic environment. KW - Biomineralization KW - Carbonate precipitation KW - Granite KW - Moonmilk KW - Needle fibre calcite PY - 2017 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/sed.12431 DO - https://doi.org/10.1111/sed.12431 SN - 1365-3091 VL - 65 IS - 2 SP - 1482 EP - 1503 PB - Wiley AN - OPUS4-43622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Segovia, J. J. A1 - Tuma, Dirk A1 - Lozano-Martín, D. A1 - Moreau, A. A1 - Martín, M. C. A1 - Vega-Maza, D. T1 - Speed of sound data and acoustic virial coefficients of two binary (N2 + H2) mixtures at temperatures between (260 and 350) K and at pressures between (0.5 and 20) MPa N2 - This work aims to address the technical concerns related to the thermodynamic characterization of gas mixtures blended with hydrogen for the implementation of hydrogen as a new energy vector. For this purpose, new experimental speed of sound measurements have been done in gaseous and supercritical phases of two binary mixtures of nitrogen and hydrogen using the most accurate technique available, i.e., the spherical acoustic resonator, yielding an experimental expanded (k = 2) uncertainty of only 220 parts in 106 (0.022%). The measurements cover the pressure range between (0.5 and 20) MPa, the temperature range between (260 and 350) K, and the composition range with a nominal mole percentage of hydrogen of (5 and 10) mol%, respectively. From the speed of sound data sets, thermophysical properties that are relevant for the characterization of the mixture, namely the second βa and third γa acoustic virial coefficients, are derived. These results are thoroughly compared and discussed with the established reference mixture models valid for mixtures of nitrogen and hydrogen, such as the AGA8-DC92 EoS, the GERG-2008 EoS, and the recently developed adaptation of the GERG-2008 EoS, here denoted GERG-H2_improved EoS. Special attention has been given to the effect of hydrogen concentration on those properties, showing that only the GERG-H2_improved EoS is consistent with the data sets within the experimental uncertainty in most measuring conditions. KW - Speed of sound KW - Acoustic resonance KW - Binary gas mixture PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551482 DO - https://doi.org/10.1016/j.jct.2022.106791 SN - 0021-9614 VL - 171 SP - 1 EP - 13 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-55148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lozano-Martín, D. A1 - Martín, M. C. A1 - Chamorro, C. R. A1 - Tuma, Dirk A1 - Segovia, J. J. T1 - Speed of sound for three binary (CH4 + H2) mixtures from p = (0.5 up to 20) MPa at T = (273.16 to 375) K N2 - Speed of sound is one of the thermodynamic properties that can be measured with least uncertainty and is of great interest in developing equations of state. Moreover, accurate models are needed by the H2 industry to design the transport and storage stages of hydrogen blends in the natural gas network. This research aims to provide accurate data for (CH4 + H2) mixtures of nominal (5, 10, and 50) mol-% of hydrogen, in the p = (0.5 up to 20) MPa pressure range and with temperatures T = (273.16, 300, 325, 350, and 375) K. Using an acoustic spherical resonator, speed of sound was determined with an overall relative expanded (k = 2) uncertainty of 220 parts in 10^6 (0.022%). Data were compared to reference equations of state for natural gas-like mixtures, such as AGA8-DC92 and GERG-2008. Average absolute deviations below 0.095% and percentage deviations between 0.029% and up to 0.30%, respectively, were obtained. Additionally, results were fitted to the acoustic virial equation of state and adiabatic coefficients, molar isochoric heat capacities and molar isobaric heat capacities as perfect-gas, together with second and third acoustic virial coefficients were estimated. Density second virial coefficients were also obtained. KW - Speed of sound KW - Acoustic resonator KW - Heat capacity PY - 2020 DO - https://doi.org/10.1016/j.ijhydene.2019.12.012 SN - 0360-3199 VL - 45 IS - 7 SP - 4765 EP - 4783 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuma, Dirk A1 - Lozano-Martín, D. A1 - Vega-Maza, D. A1 - Moreau, A. A1 - Martín, M. C. A1 - Segovia, J. J. T1 - Speed of sound data, derived perfect-gas heat capacities, and acoustic virial coefficients of a calibration standard natural gas mixture and a low-calorific H2-enriched mixture N2 - This work aims to address the technical aspects related to the thermodynamic characterization of natural gas mixtures blended with hydrogen for the introduction of alternative energy sources within the Power-to-Gas framework. For that purpose, new experimental speed of sound data are presented in the pressure range between (0.1 up to 13) MPa and at temperatures of (260, 273.16, 300, 325, and 350) K for two mixtures qualified as primary calibration standards: a 11 component synthetic natural gas mixture (11 M), and another low-calorific H2-enriched natural gas mixture with a nominal molar percentage x(H2) = 3 %. Measurements have been gathered using a spherical acoustic resonator with an experimental expanded (k = 2) uncertainty better than 200 parts in 106 (0.02 %) in the speed of sound. The heat capacity ratio as perfect-gas gammapg, the molar heat capacity as perfect-gas Cp,m pg, and the second betaa and third gammaa acoustic virial coefficients are derived from the speed of sound values. All the results are compared with the reference mixture models for natural gas-like mixtures, the AGA8-DC92 EoS and the GERG-2008 EoS, with Special attention to the impact of hydrogen on those properties. Data are found to be mostly consistent within the model uncertainty in the 11 M synthetic mixture as expected, but for the hydrogen-enriched mixture in the limit of the model uncertainty at the highest measuring pressures. KW - Natural gas mixtures KW - Speed-of-sound measurements KW - Equations of state KW - Acoustic virial coefficients PY - 2021 DO - https://doi.org/10.1016/j.jct.2021.106434 SN - 0021-9614 VL - 158 SP - 106434 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - López de Ipina, J.-M. A1 - Arevalillo, A. A1 - Martín, A. A1 - Caillard, B. A1 - Marcoulaki, E. A1 - Aguerre- Charol, O. A1 - van Duuren-Stuurman, B. A1 - Hodoroaba, Vasile-Dan A1 - Viitanen, A.-K. A1 - Witters, H. A1 - Vercauteren, S. A1 - Persson, K. A1 - Bard, D. A1 - Evans, G. A1 - Jensen, K.A. A1 - Himly, M. A1 - Scalbi, S. A1 - Papin, A. A1 - Le Bihan, O. A1 - Kanerva, T. A1 - Tirez, K. A1 - Frijns, E. A1 - Niga, P. A1 - Eleftheriadis, K. A1 - Travlos, A. A1 - Geppert, M. A1 - Himly, M. A1 - Radnik, Jörg A1 - Kuchenbecker, Petra A1 - Resch-Genger, Ute A1 - Fraboulet, I. A1 - Bressot, C. A1 - Rissler, J. A1 - Gaucher, R. A1 - Binotto, G. A1 - Krietsch, Arne A1 - Braun, A. A1 - Abenet, S. A1 - Catalan, J. A1 - Verstraelen, S. A1 - Manier, N. A1 - Manzo, S. A1 - Fransman, S. A1 - Queron, J. A1 - Charpentier, D. A1 - Taxell, D. A1 - Säämänen, A. A1 - Brignon, J.-M. A1 - Jovanovic, A. A1 - Bisson, M A1 - Neofytou, P. T1 - EC4Safenano - Catalogue of Services N2 - The publicly available document encapsulates the first version of the Catalogue of Services of the future EC4Safenano Centre (CoS 2019). The CoS 2019 is structured in 12 Service Categories and 27 Service Topics, for each of the 12 categories considered. This architecture configures a 12 x 27 matrix that allows ordering the potential EC4Safenano offer in 324 types of services/groups of services. Each type of service/group of services is described, in a simple and friendly way, by means of a specific service sheet: the EC4Safenano - Service Data Sheet (EC4-SDS). These EC4-SDSs allow structuring and summarizing the information of each service, providing the customer with a concise view of characteristics of the service and also the contact details with the service provider. The CoS 2019 deploys a map of services consisting of a set of 100 EC4-SDSs, covering 7 of the 12 Service Categories and 17 of the 27 Service Topics. The harmonization of services is visualized as a future necessary step in EC4Safenano, in order to strengthen the offer and provide added value to customers with a growing offer of harmonized services in future versions of the CoS. The information contained in this document is structured in 3 main sections, as follows: • Catalogue structure. This section describes in short the main characteristics of the CoS 2019. • Catalogue content. This section represents the core part of the document and encapsulates the set of 100 SDSs displaying the offer proposed by the CoS 2019. • Online Catalogue. This section describes the resources implemented by EC4Safenano to facilitate the on-line consultation of the CoS 2019 by customers and other interested parties. KW - Nano-safety KW - Analytical services KW - Nanomaterials KW - Catalogue of services KW - EC4SafeNano KW - European Centre PY - 2021 UR - https://ec4safenano.eu-vri.eu/Public/Guidance SP - 1 EP - 72 PB - EU-VRi – European Virtual Institute for Integrated Risk Management CY - Stuttgart, Germany AN - OPUS4-52943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dreßler, Martin A1 - Röllig, Mathias A1 - Schmidt, Martin A1 - Maturilli, A. A1 - Helbert, J. T1 - Temperature distribution in powder beds during 3D printing N2 - Purpose – This purpose of this paper is to report about the temperature distribution in metal and ceramic powder beds during 3D printing. The differing powders are thoroughly characterized in terms of thermal conductivity, thermal diffusivity, emissivity spectra and density. Design/methodology/approach – The temperature distribution was measured in a 3D printing appliance (Prometal R1) with the help of thin thermocouples (0.25 mm diameter) and thermographic imaging. Temperatures at the powder bed surface as well as at differing powder bed depths were determined. The thermal conductivity, thermal diffusivity and emissivity spectra of the powders were measured as well. Numerical simulation was used to verify the measured temperatures. Findings – The ceramic powder heated up and cooled down more quickly. This finding corresponds well with numerical simulations based on measured values for thermal conductivity and thermal diffusivity as well as emissivity spectra. An observed color change at the metal powder has only little effect on emissivity in the relevant wavelength region. Research limitations/implications – It was found that thermocouple-based temperature measurements at the powder bed surface are difficult and these results should be considered with caution. Practical implications – The results give practitioners valuable information about the transient temperature evolution for two widely used but differing powder systems (metal, ceramic). The paramount importance of powder bed porosity for thermal conductivity was verified. Already small differences in thermal conductivity, thermal diffusivity and hence volumetric heat capacity lead to marked differences in the transient temperature evolution. Originality/value – The paper combines several techniques such as temperature measurements, spectral emissivity measurements, measurements of thermal conductivity and diffusivity and density measurements. The obtained results are put into a numerical model to check the obtained temperature data and the other measured values for consistency. This approach illustrates that determinations of surface temperatures of the powder beds are difficult. KW - Rapid prototypes KW - Printers KW - Heat transfer KW - Powders KW - Ceramics KW - Metals PY - 2010 DO - https://doi.org/10.1108/13552541011065722 SN - 1355-2546 VL - 16 IS - 5 SP - 328 EP - 336 PB - MCB University Press CY - Bradford AN - OPUS4-22002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ewert, Uwe A1 - Martin Tschaikner, Martin A1 - Hohendorf, Stefan A1 - Bellon, Carsten A1 - Haith, M. I. A1 - Huthwaite, P. A1 - Lowe, M. J. S. T1 - Corrosion monitoring with tangential radiography and limited view computed tomography N2 - Accurate and reliable detection of subsea Pipeline corrosion is required in order to verify the integrity of the pipeline. A laboratory trial was conducted with a representative pipe sample. The accurate measurement of the wall thickness and corrosion was performed with high energy X-rays and a digital detector array. A 7.5 MV betatron was used to penetrate a stepped pipe and a welded test pipe of 3 m length and 327 mm outer diameter, with different artificial corrosion areas in the 24 mm thick steel wall. The radiographs were taken with a 40 x 40 cm² digital detector array, which was not large enough to cover the complete pipe diameter after magnification. A C-arm based geometry was tested to evaluate the potential for automated inspection in field. The primary goal was the accurate measurement of wall thickness conforming to the standard. The same geometry was used to explore the ability of a C-arm based scanner in asymmetric mode for computed tomography (CT) measurement, taking projections covering only two thirds of the pipe diameter. The technique was optimized with the modelling Software aRTist. A full volume of the pipe was reconstructed and the CT data set was used for reverse engineering, providing a CAD file for further aRTist simulations to explore the technique for subsea inspections. T2 - 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Minneapolis, Minnesota, USA DA - 26.07.2015 KW - Corrosion monitoring KW - Tangential radiography KW - Computed tomography PY - 2016 SN - 978-0-7354-1353-5 DO - https://doi.org/10.1063/1.4940574 SN - 0094-243X VL - 1706 SP - 110003-1 EP - 110003-8 PB - AIP Publishing AN - OPUS4-37555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nilsson, R. H. A1 - Taylor, A. F. S. A1 - Adams, R. I. A1 - Baschien, C. A1 - Bengtsson-Palme, J. A1 - Cangren, P. A1 - Coleine, C. A1 - Iršėnaitė, R. A1 - Martin-Sanchez, Pedro Maria A1 - Meyer, W. A1 - Oh, S.-Y. A1 - Sampaio, J. P. A1 - Seifert, K. A. A1 - Sklenář, F. A1 - Stubbe, D. A1 - Suh, S.-O. A1 - Summerbell, R. A1 - Svantesson, S. A1 - Unterseher, M. A1 - Visagie, C. M. A1 - Weiss, M. A1 - Woudenberg, J. HC. A1 - Wurzbacher, C. A1 - Van den Wyngaert, S. A1 - Yilmaz, N. A1 - Yurkov, A. A1 - Kõljalg, U. A1 - Abarenkov, K. A1 - Daniel, H.-M. A1 - Glassman, S. I. A1 - Hirooka, H. A1 - Irinyi, L. T1 - Taxonomic annotation of public fungal ITS sequences from the built environment – a report from an April 10–11, 2017 workshop (Aberdeen, UK) N2 - Recent DNA-based studies have shown that the built environment is surprisingly rich in fungi. These indoor fungi – whether transient visitors or more persistent residents – may hold clues to the rising levels of human allergies and other medical and building-related health problems observed globally. The taxo¬nomic identity of these fungi is crucial in such pursuits. Molecular identification of the built mycobiome is no trivial undertaking, however, given the large number of unidentified, misidentified, and technically compromised fungal sequences in public sequence databases. In addition, the sequence metadata required to make informed taxonomic decisions – such as country and host/substrate of collection – are often lacking even from reference and ex-type sequences. Here we report on a taxonomic annotation workshop (April 10–11, 2017) organized at the James Hutton Institute/University of Aberdeen (UK) to facilitate reproducible studies of the built mycobiome. The 32 participants went through public fungal ITS bar¬code sequences related to the built mycobiome for taxonomic and nomenclatural correctness, technical quality, and metadata availability. A total of 19,508 changes – including 4,783 name changes, 14,121 metadata annotations, and the removal of 99 technically compromised sequences – were implemented in the UNITE database for molecular identification of fungi (https://unite.ut.ee/) and shared with a range of other databases and downstream resources. Among the genera that saw the largest number of changes were Penicillium, Talaromyces, Cladosporium, Acremonium, and Alternaria, all of them of significant importance in both culture-based and culture-independent surveys of the built environment. KW - Indoor mycobiome KW - Built environment KW - Molecular identification KW - Fungi KW - Taxonomy KW - Systematics KW - Sequence annotation KW - Metadata KW - Open data PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-438949 DO - https://doi.org/10.3897/mycokeys.28.20887 SN - 1314-4049 SN - 1314-4057 VL - 28 SP - 65 EP - 82 PB - Pensoft Publishers CY - Washington, DC AN - OPUS4-43894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Nowak, S. H. A1 - Petric, M. A1 - Buchriegler, J. A1 - Bjeoumikhov, A. A1 - Bjeoumikhova, Z. A1 - von Borany, J. A1 - Munnik, F. A1 - Radtke, Martin A1 - Renno, A. D. A1 - Reinholz, Uwe A1 - Scharf, O. A1 - Tilgner, J. A1 - Wedell, R. T1 - Road to micron resolution with a color X-ray camera - Polycapillary optics characterization N2 - In a color X-ray camera spatial resolution is achieved by means of a polycapillary optic conducting X-ray photons from small regions on a sample to distinct energy dispersive pixels on a CCD matrix. At present, the resolution limit of color X-ray camera systems can go down to several microns and is mainly restricted by Pixel dimensions. The recent development of an efficient subpixel resolution algorithm allows a release from pixel size, limiting the resolution only to the quality of theoptics. In this work polycapillary properties that influence the spatial resolution are systematized and assessed both theoretically and experimentally. It is demonstrated that with the current technological Level reaching one micron resolution is challenging, but possible. KW - Color X-ray camera KW - Polycapillary optics PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404404 DO - https://doi.org/10.48550/arXiv.1705.08939 SN - 2331-8422 SP - 1 EP - 11 PB - Cornell University CY - Ithaca, NY AN - OPUS4-40440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strüder, L. A1 - Hartmann, R. A1 - Holl, P. A1 - Ihle, S. A1 - Huth, M. A1 - Schmidt, J. A1 - Tham, Ch. A1 - Kanngießer, B. A1 - Baumann, J. A1 - Renno, A. A1 - Grenzer, J. A1 - Radtke, Martin A1 - Abboud, A. A1 - Pietsch, U. A1 - Soltau, H. T1 - High Speed, High Resolution imaging spectrometers based on pnCCDs for XRF and XRD applications N2 - For many years pnCCDs have been well known as X-ray detectors for spectroscopic imaging in many fields of science: X-Ray Fluorescence analysis (XRF), X-ray Diffraction (XRD) with light sources in large accelerator facilities as well as with laboratory light sources or with X-rays from celestial sources in X-ray astronomy. A brief introduction in GEXRF (Grazing Emission XRF) measurements with a laboratory laser produced plasma source will be given, PIXE (Particle Induced X-ray Emission) measurements and D2XRF (Double Dispersive X-Ray Fluorescence) and Slicing experiments with pnCCDs coupled to polycapillary optics performed at the BESSY synchrotron will be shown. Energy-dispersive Laue diffraction with ultra-hard X-rays for the analysis of defects in metals will conclude the overview of spectroscopic X-ray imaging measurements in the field of structure and dynamics of matter. KW - PnCCD KW - Synchrotron KW - XRF PY - 2016 DO - https://doi.org/10.1017/S1431927616001355 VL - 22 IS - S3 SP - 100 EP - 101 AN - OPUS4-38884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -