TY - JOUR A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Schmidt, J. A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Hierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potential N2 - Mechanically stable structures with interconnected hierarchical porosity combine the benefits of both small and large pores, such as high surface area, pore volume, and good mass transport capabilities. Hence, lightweight micro-/meso-/macroporous monoliths are prepared from ordered mesoporous silica COK-12 by means of spark plasma sintering (SPS, S-sintering) and compared to conventionally (C-) sintered monoliths. A multi-scale model is developed to fit the small angle X-ray scattering data and obtain information on the hexagonal lattice parameters, pore sizes from the macro to the micro range, as well as the dimensions of the silica population. For both sintering techniques, the overall mesoporosity, hexagonal pore ordering, and amorphous character are preserved. The monoliths' porosity (77–49%), mesopore size (6.2–5.2 nm), pore volume (0.50–0.22 g cm-3 ), and specific surface area (451–180 m2 g-1) decrease with increasing processing temperature and pressure. While the difference in porosity is enhanced, the structural parameters between the C-and S-sintered monoliths are largely converging at 900 C, except for the mesopore size and lattice parameter, whose dimensions are more extensively preserved in the S-sintered monoliths, however, coming along with larger deviations from the theoretical lattice. Their higher mechanical properties (biaxial strength up to 49 MPa, 724 MPa HV 9.807 N) at comparable porosities and ability to withstand ultrasonic treatment and dead-end filtration up to 7 bar allow S-sintered monoliths to reach a high permeance (2634 L m-2 h-1 bar-1), permeability (1.25 x 10^-14 m2), and ability to reduce the chemical oxygen demand by 90% during filtration of a surfactant-stabilized oil in water emulsion, while indicating reasonable resistance towards fouling. KW - SAXS KW - Hierarchically porous KW - Silica KW - Water filtration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555928 DO - https://doi.org/10.1039/D2NA00368F SN - 2516-0230 SP - 1 EP - 17 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-55592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Göbel, M. A1 - Kirsch, S. A1 - Schwarze, L: A1 - Schmidt, L. A1 - Scholz, H. A1 - Haußmann, J. A1 - Klages, M. A1 - Scholta, J. A1 - Markötter, Henning A1 - Alrwashdeh, S. A1 - Manke, I. A1 - Müller, Bernd R. T1 - Transient limiting current measurements for characterization of gas diffusion layers N2 - The water management in proton exchange membrane fuel cells (PEMFC) is strongly influenced by the design of the gas diffusion layers (GDL). Limiting current measurements in small-scale cells operating at high stoichiometries are useful to determine the oxygen transport resistance. The oxygen transport resistance increases, once water condenses inside the GDL. In this study a new electrochemical method for voltage loss estimation of GDL induced oxygen transport losses are presented. This new method, referred to as “transient limiting current” (TLC), is compared with the literature method. TLC allows a direct estimation of oxygen transport resistance at an arbitrarily conditioned state. This study also presents a case study of liquid water visualization of a PEM fuel cell with varying GDLs types. With the help of quasi in-situ synchrotron X-ray computed tomography and time resolved radiography measurements we investigate appearance and distribution of liquid water inside the GDLs under limiting current conditions. KW - In-situ characterization of GDLs KW - In-situ synchrotron X-ray computed tomography KW - In-situ synchrotron X-ray radiography KW - BAMline PY - 2018 DO - https://doi.org/10.1016/j.jpowsour.2018.09.003 SN - 0378-7753 SN - 1873-2755 VL - 402 SP - 237 EP - 245 PB - Elsevier B.V. AN - OPUS4-46552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alrwashdeh, S. S. A1 - Markötter, Henning A1 - Haußmann, J. A1 - Hilger, A. A1 - Klages, M. A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Manke, I. T1 - Investigation of water transport in newly developed micro porous layers for polymer electrolyte membrane fuel cells N2 - In this investigation, synchrotron X-ray imaging was used to investigate the water distribution inside newly developed gas diffusion media in polymer electrolyte membrane fuel cells. In-situ radiography was used to reveal the relationship between the structure of the microporous layer (MPL) and the water flow in a newly developed MPL equipped with randomly arranged holes. A strong influence of these holes on the overall water transport was found. This contribution provides a brief overview to some of our recent activities on this research field. KW - Polymer electrolyte membrane fuel cell KW - Microporous layer KW - Water distribution KW - Radiography KW - Synchrotron X-ray imaging PY - 2017 DO - https://doi.org/10.9729/AM.2017.47.3.101 SN - 2287-4445 SN - 2287-5123 VL - 47 IS - 3 SP - 101 EP - 104 AN - OPUS4-43356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tötzke, C. A1 - Gaiselmann, G. A1 - Osenberg, M. A1 - Bohner, J. A1 - Arlt, Tobias A1 - Markötter, Henning A1 - Hilger, A. A1 - Wieder, F. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, Manfred P. A1 - Banhart, J. A1 - Schmidt, V. A1 - Lehnert, W. A1 - Manke, I. T1 - Three-dimensional study of compressed gas diffusion layers using synchrotron X-ray imaging N2 - We present a synchrotron X-ray tomographic study on the morphology of carbon fiber-based gas diffusion layer (GDL) material under compression. A dedicated compression device is used to provide well-defined compression conditions. A flat compression punch is employed to study the fiber geometry at different degrees of compression. Transport relevant geometrical parameters such as porosity, pore size and tortuosity distributions are calculated. The geometric properties notably change upon compression which has direct impact on transport conditions for gas and fluid flow. The availability of broad 3D paths, which are most important for the transport of liquid water from the catalyst layer through the GDL, is markedly reduced after compression. In a second experiment, we study the influence of the channel-land-pattern of the flow-field on shape and microstructure of the GDL. A flow-field compression punch is employed to reproduce the inhomogeneous compression conditions found during fuel cell assembly. While homogenously compressed underneath the land the GDL is much less and inhomogeneously compressed under the channel. The GDL material extends far into the channel volume where it can considerably influence gas and fluid flow. Loose fiber endings penetrate deeply into the channel and form obstacles for the discharge of liquid water droplets. KW - Synchrotron X-ray tomography KW - Gas diffusion layer (GDL) KW - Microstructure KW - Water transport path KW - Pore size analysis KW - Geometrical tortuosity PY - 2014 DO - https://doi.org/10.1016/j.jpowsour.2013.12.062 SN - 0378-7753 VL - 253 SP - 123 EP - 131 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-29979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan, Jenny A1 - Stühler, Merlin R. A1 - Fornacon-Wood, Christoph A1 - Dimde, Mathias A1 - Ludwig, Kai A1 - Sturm, Heinz A1 - Olmedo-Martínez, Jorge L. A1 - Müller, Alejandro J. A1 - Plajer, Alex J. T1 - Sulfur-containing block polymers from ring-opening copolymerization: coordinative encapsulants for transition metals N2 - Sulfur-containing polymers can coordinate transition metals via sulfur-centered, chemically soft lone pairs, although this typically occurs in a spatially uncontrolled manner. In this study, we employed the controlled ring-opening copolymerization of oxetane with sulfur-containing comonomers to construct a series of amphiphilic block copolymers featuring thioester and thiocarbonate functionalities. These copolymers self-assemble in aqueous solution into aggregates with a sulfur-rich core capable of coordinating transition metals. This behavior could be resolved by employing cryo-transmission electron tomography and then extended to complexes incorporating functional coligands. Our study demonstrates how selective catalysis can be harnessed to produce functional polymers with tunable metal coordination properties, paving the way for an emerging class of sulfur-containing copolymers. KW - Sulfur-containing polymer KW - Controlled synthesis KW - Metal ion coordination KW - Cryo TEM PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626157 DO - https://doi.org/10.1039/d4py01415d SN - 1759-9962 VL - 16 IS - 8 SP - 1003 EP - 1009 PB - Royal Society of Chemistry (RSC) AN - OPUS4-62615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nörthemann, K. A1 - Moritz, W. A1 - Bienge, J.-E. A1 - Müller, J. A1 - Despinasse, Marie-Claire A1 - Raspe, Tina A1 - Krüger, Simone ED - Krüll, W. T1 - Forest fire detection using hydrogen sensors N2 - Forest fires start mostly in partial combustion. In this paper we present a hydrogen sensor to defect early stages of forest fires. First indoor experiments in a smoke density chamber with wood samples, proved that the sensor produce a strong signal change when the smouldering of wood starts, already before the CO concentration, measured in FTIR spectrometry, exceeds 10 ppm. In outdoor experiments we were able to detect forest fire in a distance of 110 m. T2 - AUBE '14 - 15th International conference on automatic fire detection CY - Duisburg, Germany DA - 14.10.2014 KW - Hydrogen sensor KW - Forest KW - Fire detection KW - Smoke gases KW - FTIR KW - Rauchkammer PY - 2014 SN - 978-3-940402-02-8 VL - 1 SP - 247 EP - 254 CY - Duisburg AN - OPUS4-31949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spickermann, J. A1 - Martin, K. A1 - Räder, H.J. A1 - Müllen, K. A1 - Schlaad, H. A1 - Müller, A. H. E. A1 - Krüger, Ralph-Peter T1 - Quantitative analysis of broad molecular weight distributions obtained by MALDI-TOF mass spectrometry PY - 1996 SN - 1469-0667 SN - 1356-1049 SN - 1365-0718 IS - 2 SP - 161 EP - 165 PB - IM Publications CY - Chichester AN - OPUS4-2153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mehner, Hartmut A1 - Menzel, Michael A1 - Müller, J.-P. A1 - Gähde, J. A1 - Güttler, B. T1 - Plasma-assisted transformation of iron surfaces into magnetite KW - Iron KW - Magnetite KW - Mössbauer spectroscopy KW - Plasma oxidation PY - 1999 SN - 0257-8972 VL - 116-119 SP - 367 EP - 369 PB - Elsevier Science CY - Lausanne AN - OPUS4-773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmelzer, J.W.P. A1 - Müller, Ralf A1 - Möller, J. A1 - Gutzow, I.S. T1 - Elastic stresses, stress relaxation and crystallisation: theory of nucleation PY - 2002 SN - 0031-9090 VL - 43C SP - 291 EP - 300 PB - Thornton CY - Sheffield AN - OPUS4-3116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmelzer, J.W.P. A1 - Müller, Ralf A1 - Möller, J. A1 - Gutzow, I.S. T1 - Theory of nucleation in viscoelastic media: application to phase formation in glassforming melts N2 - Glassforming melts behave, in the vicinity of the temperature of vitrification Tg, as viscoelastic bodies. A general theory of nucleation in a viscoelastic body developed elsewhere is applicable to the description of phase formation processes in such systems. The present contribution is directed to the demonstration of the relevance of this proposed general theory to describing phase transformation processes in glassforming melts. The application of the theory is shown to explain a number of experimental results on crystallization of glassforming melts, which have not found a satisfactory interpretation so far. PY - 2003 DO - https://doi.org/10.1016/S0022-3093(02)01428-X SN - 0022-3093 VL - 315 SP - 144 EP - 160 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-2078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -